ffmpeg Documentation

Table of Contents

1 Synopsis
[3 Detailed description|
o
e [3.1.1 Simple filtergraphs|
e [3.1.2 Complex filtergraphs|
O [3.2 Stream copy|
i Stream selection|
5 Options
[5.1 Stream specifiers|
[5.2 Generic options|
[5.4 Main options|
[5.5 Video Options|
[5.6 Advanced Video options|
[5.7 Audio Options|
[5.8 Advanced Audio options|
[5.9 Subtitle options|
[5.10 Advanced Subtitle options|
[5.11 Advanced options|
[5.12 Preset files|
® [5.12.1 ffpreset files|
® [5.12.2 avpreset files|
® |6 Examples
O [6.1 Video and Audio grabbing|
O 16.2 X11 grabbing|
O [6.3 Video and Audio file format conversion|
°
O [7.1 Quoting and escaping|
e |7.1.1 Examples
Dat

o

O O O0OO0OO0OO0OO0OO0OO0OO0oOOo

O
i
o

©)
[<J]
W)
=
=
a
o
c
=
8
o
=1

°
o
o
O [7.6 Rati
O [71.7 Colo
[7.8 Channel Layout]
® |8 Expression Evaluation|

o

[9 OpenCL Options|

|10 Codec Options|

11 Decoders

[12 Video Decoders|

O
O

2.1 hevc|
2.2 rawvideo
® [12.2.1 Option

II
I

|13 Audio Decoders|

o

o

O O O O

—] [—=1—
[

o

O
O

—

3.1 ac3
® [13.1.1 AC-3 Decoder Options|
3.2 flag
e [13.2.1 FLAC Decoder options|

—_

[13.3 ffwavesynth|

3.4 libcel

3.5 libgs

3.6 libilbc

® |13.6.1 Options

|13.7 libopencore-amrnb)|

[13.8 libopencore-amrwhb)|

13.9 libopu

!

® (14 Subtitles Decoders|

o

O

—_

—

4.1 dvbsub

® |14.1.1 Options
4.2 dvdsu
® |14.2.1 Options

o
o

O [14.3 libzvbi-teletext]

® |(14.3.1 Option

[
2]

® |15 Encoders

® (16 Audio Encoders|

i

© [16.1 aad

® [16.1.1 Option

I

O [16.2 ac3 and ac3_fixed|

o

® [16.2.1 AC-3 Metadata|
O [16.2.1.1 Metadata Control Options|
O [16.2.1.2 Downmix Levels|
O [16.2.1.3 Audio Production Information|
O [16.2.1.4 Other Metadata Options|
® [16.2.2 Extended Bitstream Information|
O [16.2.2.1 Extended Bitstream Information - Part 1
O [16.2.2.2 Extended Bitstream Information - Part 2|
® |16.2.3 Other AC-3 Encoding Options|
® [16.2.4 Floating-Point-Only AC-3 Encoding Options|

16.3 flac

16.3.1 Option
pu
16.4.1 Option
.5 libfdk_aa
16.5.1 Option
® (16.5.2 Examples|
[16.6 libmp3lame]
® |16.6.1 Option
O [16.7 libopencore-amrnb)|
® |16.7.1 Option
6.8 libopus|
® [16.8.1 Option Mapping|
6.9 libshine]
® |16.9.1 Option
[16.10 libtwolame]
® [16.10.1 Options|
[16.11 libvo-amrwbenc]
® [16.11.1 Options|
6.12 libvorbis
® [16.12.1 Options|
[16.13 libwavpack]
® [16.13.1 Options|
6.14 mjpeg
® [16.14.1 Options|
6.15 wavpac
® [16.15.1 Options|
O [16.15.1.1 Shared options|
O [16.15.1.2 Private options|
® |17 Video Encoders|
O |17.1 Hap
17.1.1 Option
O 17.2 jpeg200
17.2.1 Option
.3 libkvazaa
7.3.1 Option
ibopenh264|
7.4.1 Option
.5 libtheora
17.5.1 Option
17.5.2 Examples|
ibvpx
17.6.1 Option
.7 libwebp

2]

@]
—
N
~
]
@

[]
72

O
—
(®)
=
@]

(]
@

o

2]

[
2]

O

o

2]

O

O

o

O

O

o

i

[]
72

—
i
-}

[]
72

O
—
)
=

(]
—
@

(@)
=
=

4

J—

[]
—
72

©)
—
i
—
=

o O
72

o
3

.6

—

[]
72

©)
|
i

® [17.7.1 Pixel Format|
® |17.7.2 Options
[17.8 libx264, 1ibx264rgb|
® [17.8.1 Supported Pixel Formats|
17.8.2 Options
.9 1ibx26
17.9.1 Options
7.10 libxvid
® [17.10.1 Options|
7.11 mpeg?|
® |17.11.1 Options|
7.12 png
® (17.12.1 Private options|
17.13 ProRes
® [17.13.1 Private Options for prores-ks|
® [17.13.2 Speed considerations|
[17.14 QSV encoders|
17.15 snow|
® [17.15.1 Options|
17.16 VAAPI encoders|
7.17 vc2|
® [17.17.1 Options|
o (18 Subtitles Encoders|
O [(18.1 dvdsu
°
® |19 Bitstream Filters|
[19.1 aac_adtstoasd|
19.2 chomp
19.3 dca_core
[19.4 dump_extra|
[19.5 extract extradatal
[19.6 h264 mp4toannexb|
[19.7 heve_mp4toannexb|
19.8 imxdump
[19.9 mjpeg2ipeg|
[19.10 mjpegadump|
[19.11 mov2textsub)
[19.12 mp3decomp|
[19.13 mpeg4_unpack_bframes|
19.14 noise]
19.15 nul]|

O

O
—
i
—_—
=
)

o

O

O
—

o

O

o

o

O

I!

O

O O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0oOOo

O [19.18 vp9 superframe)
O [19.19 vp9 superframe split|
O [19.20 vp9_raw_reorder

® [20 Format Options|
O [20.1 Format stream specifiers|
1 Demuxer

[J
i
»

o

.2 applehttp

O O O O
O] D] [D] [B9] [N
o s |l | o
B[]~
o s
| e
=
Do

1.5

(@)

oncal
1.5.1 Syntax
1.5.2 Option

e o o
=] [[[
==
([«
2z
s
=19
<15

=12

9]

o |

O]

1.6

O O OO

o] [T [t
—| =] —
ol |ool[<
== pa
SZ =
2 N
[1Q

N

e [21.9.1 Examples|

1.10 libgmel

[21.11 libopenmpt|

[21.12 mov/mp4/3gp/QuickTime]
1.13 mpegt

[N

1.15 rawvideo|

DO D] [[
— —
— —
(@) BN
= IEIE
[1Q (@]
=
a
o | L2

O O OO O0OO0OO0O0

21.17 tedcaptions|
M

o
™o
)
o
S
o
@
2]

O
[\S)
e |
—
=%

2.1.1 Options

@]
[\S)
o |
\®]
im
[\)U)
I

.2.1 Option

O
)
N
w
D&
=
—

2.3.1 Options|
hromaprint|
2.4.1 Options

O
™
)

)

(@)

@]
[\S)
)
)]
Ql\)
(@]

[J
9]

2.5.1 Examples|

O

O
o] [T
D[
~|on
o
&=
wn

O
o)

2.8 framecrc
e [22.8.1 Examples|
2.9 framehas

o
i

o

o

o O

O o

O O OO o

O O

i

o

O

o

e [22.9.1 Examples|
[22.10 framemd3|

e [22.10.1 Examples|

2.11 gi

D) D
N
—
[\
=|ba
o=
2]

® [22.12.1 Examples|
22.13 hls
® [22.13.1 Options|
2.14 ico|
22.15 image?|
® [22.15.1 Examples|
® [22.15.2 Options|
22.16 matroska
® [22.16.1 Metadatal
® [22.16.2 Options|

!I

)
N
—
=
=

o
o

e [22.17.1 Examples|
[22.18 mov, mp4, ismv|
® [22.18.1 Options|
® [22.18.2 Example]
® [22.18.3 Audible AAX]
3
2.20 mpegts
e [22.20.1 Options|
e [22.20.2 Example]
[22.21 mxf, mxf d10|
e [22.21.1 Options|
2.22 null
2.23 nu
2.24 ogg
[22.25 segment, stream_segment, ssegment]
® [22.25.1 Options|
® [22.25.2 Examples|
[22.26 smoothstreaming]
2.27 fifo
® [22.27.1 Examples|
22.28 tee
e [22.28.1 Examples|
[22.29 webm_dash_manifest]
® [22.29.1 Options|
® [22.29.2 Example]
[22.30 webm chunkl|
e [22.30.1 Options|

| [T
o
=
©
=
(@]

EIN

e [22.30.2 Example]
23 Metadata

°
® [24 Protocol Options|
°

25 Protocols

o

DN

5.1 async|
5.2 blura
5.3 cach
5.5 crypto

5

59¢

DI D] D] [D] [D] [B] D] [DO] [D] [
N4 A IS4 N
»—5 [o2e] | BN | [@) ESN
- B | =2 I [=¢ | [=W o
==l |B == Q
=== (CH | i~y =]
) = [¢)
Q =y |l

O O O0OO0OO0OO0OO0OO0OO0oOO0

® |25.11.1 HTTP Cookies|

5.16 pipe
5.17 prompeg|

DO O] D] D] D] [[DI] [D] [D] [D] [
e IRA IR I 154 B IR |
I o] [=] | — et | | i | | | | —
NS] 1 e | [e=] Nl | [ore] (9,1 | EXN | LOS] | 1\S)
=41 I=Y1 =Y 1 [=Y]]= ® —
=d | = | = LR = D R »—-BEBO
SIEBIEIEBIIE s EAERS
SIcIRIR I LJ]V)(IJS
8 |28 R [¢) =15

[\
W
[\
w
—
5
(&)
=
wn

[25.24 libsmbclient]
5.25 libss
25.26 librtmp rtmp, rtmpe, rtmps, rtmpt, rtmpte]
5.27 rtp
5.28 rtsp
® [25.28.1 Examples|

i

O O O0OO0OO0OO0OO0OO0O0OO0OO0OO0OO0OO0OO0OO0oOO0

ii

O
[\
e
[\
\O
el
o
i®

® [25.29.1 Muxe
® [25.29.2 Demuxer]

5.31 srtp
5.32 subfil
5.33 te

D] D] [D] [B [
bl bl
(O8] (%]
N]
P~ »
(e}
o | LD Qr
D
(@]

O O OO OO0

]

5.35 s

O

o

25.36 udp
® [25.36.1 Examples|

25.37 unix

® |26 Device Options|

® [27 Input Devices|

O

O

O

i

o

Y]
o

o

O

To
~
i
o
2]
=3
s}
<

o O o

7.1 alsa
® [27.1.1 Options
[27.2 avfoundation|
® [27.2.1 Option
e [27.2.2 Examples|
7.3 bkt
7.3.1 Option
7.4 decklin
® [27.4.1 Option
e [27.4.2 Examples|
7.5 kmsgral
® |27.5.1 Option
® [27.5.2 Examples|
[27.6 libndi_newtek]|
® [27.6.1 Option
® [27.6.2 Examples|

i

[\
172}

[\
|72)

[NS]
72)

!
o

[\
72}

[NS]
72)

Y]

7.7.1 Option
27.7.2 Examples|

o o
@

o
~
o0
Sl
a
9
<

[\S)
e
O
[ra
[eR
=2 1h
..
o
S

7

o0
o

ption

2]

[]
]

7.9.1 Option
.10 1ec61883
e [27.10.1 Options|
® [27.10.2 Examples|
7.11 jac
® [27.11.1 Options|
7.12 lavfi
® [27.12.1 Options|
® [27.12.2 Examples|
27.13 libedio]
® [27.13.1 Options|
[27.14 1ibdc1394]
27.15 openal
® [27.15.1 Options|
® [27.15.2 Examples|
27.16 0ss

2]

i
Y

E

%]

® [27.16.1 Options|
7.17 pulse
® [27.17.1 Options|
® [27.17.2 Examples|
27.18 sndio|
® [27.18.1 Options|
[27.19 video4linux?2, v412)|
® [27.19.1 Options|
O [27.20 vfwcap
e [27.20.1 Options|
7.21 x11grab
® [27.21.1 Options|
® [28 Output Devices|
O [28.1 alsa
e [28.1.1 Examples|
O [28.2 caca
® |28.2.1 Option
e [28.2.2 Examples|
8.3 decklin
® [28.3.1 Options
e [28.3.2 Examples|
[28.4 libndi_newtek]
® |28.4.1 Options
® [28.4.2 Examples|
8.5 fbde
® [28.5.1 Options
e [28.5.2 Examples|
8.6 openg
28.6.1 Options

(@)
o)

O

o

o

]

i

I

o
I

[\)

O

[\S]

(@)
i
<

[\)

O
E

® |28.9.1 Options

® [28.9.2 Interactive commands|
® [28.9.3 Examples|

8.10 sndio

8.11 xv|

e [28.11.1 Options|

e [28.11.2 Examples|

® [29 Resampler Options|

O
I

O
o

[30 Scaler Options|

[31 Filtering Introduction|

32 eraph2dof]

[33 Filtergraph description|

O
O

[33.1 Filtergraph syntax|

[33.2 Notes on filtergraph escaping]

[34 Timeline editing]|

[35 Options for filters with several inputs (framesync)|

[36 Audio Filters|

O
O
O

o O

O

i

o

I

(@)
)

O

i

o

O O O OO0 O0
i

O

i

o O o

O O

[36.1 acompressor]
6.2 acop
6.3 acrossfade
® [36.3.1 Examples|
6.4 acrushe
36.5
® [36.5.1 Examples|
6.6 aecho
® [36.6.1 Examples|
6.7 aemphasis
6.8 aeval
® [36.8.1 Examples|
6.9 afade
® [36.9.1 Examples|
6.10 afftfilt
® [36.10.1 Examples|
6.11 afi
® [36.11.1 Examples|
6.12 aforma
6.13 ag
6.14 alimite
6.15 S

i!

oY)
[
o
o
—
)

i

[o¥)

W] |9 W] |92
)
=
N
o
o=

o
o.
S|IB1EIE

%)
o)
—
3
o
=
o
e
()

® [36.17.1 Examples|
6.18 amix|

[36.19 anequalizer]
® [36.19.1 Examples|
® [36.19.2 Commands|
6.20 anu

W[
=)
[\
—_
o

(@)

oo
o=

® [36.21.1 Examples|
6.22 aphase
6.23 apulsato

iI

O [36.24 aresample]
® [36.24.1 Examples|
o
® [36.25.1 Examples|
O [36.26 asetnsamples|
o
O [36.28 ashowinfo)
o
O [36.30 atempo
® [36.30.1 Examples|
6.31 atri
6.32 bandpass|
36.33 bandreject]
6.34 bass
6.35 biquad
O 136.36 bs2b
O [36.37 channelmap|
O [36.38 channelsplit]
o
® [36.39.1 Examples|
O [36.40 compand
® [36.40.1 Examples|
O [36.41 compensationdelay|
O [36.42 crossfeed
O [36.43 crystalizer]
o
O [36.45 dynaudnorm|
O [36.46 earwax|
o
® [36.47.1 Examples|
O [36.48 extrastereo|
O [36.49 firequalizer]
® [36.49.1 Examples|
O [36.50 flange
O 36.51 haa
@]

w!

O
O
O
O
O

[O8)

I

[O8)

wi

I [W9] [
N
W
[\
=
o
(@]
-EIJ'

O [36.53 headphone]

® [36.53.1 Examples|
O [36.54 highpass
O [36.55 joinl
O [36.56 ladspa
® [36.56.1 Examples|
® [36.56.2 Commands|

I!

[°8)

o

[36.57 loudnorm|
6.58 lowpass|
® [36.58.1 Examples|
6.59 pan
® [36.59.1 Mixing examples|
® [36.59.2 Remapping examples|
[36.60 replaygain|
6.61 resample
[36.62 rubberband|
[36.63 sidechaincompress|
® [36.63.1 Examples|
[36.64 sidechaingate]
[36.65 silencedetect]
® [36.65.1 Examples|
[36.66 silenceremove]
® [36.66.1 Examples|
6.67 sofalize
® [36.67.1 Examples|
[36.68 stereotools|
® [36.68.1 Examples|
[36.69 stereowiden|
[36.70 superequalizer]
6.71 surround
6.72 treble
6.73 tremolo
6.74 vibrato
6.75 volume
® [36.75.1 Commands|
® [36.75.2 Examples|
O [36.76 volumedetect|
® [36.76.1 Examples|
® [37 Audio Sources|
O [37.1 abuffe
e [37.1.1 Examples|
O [37.2 aevalsrc
e [37.2.1 Examples|
7.3 anullsrc
e [37.3.1 Examples|
37.4 flite
e [37.4.1 Examples|
7.5 anoisesrc
® [37.5.1 Examples|
7.6 sine

o
!

O
i

O O O O
)

o

o

O

O
i

o

II

O OO0 OO0 O0OOo
))

%8

i

o
i

O

O
Y

o
i

® [37.6.1 Examples|
® |38 Audio Sinks
O [38.1 abuffersink]
o

® [39 Video Filters|
[39.1 alphaextract|
[39.2 alphamerge]

9.3 as

9.4 atadenoise]

9.5 avgblu

9.6 bbox
[39.7 bitplanenoise)
[39.8 blackdetect|
[39.9 blackframe]
[39.10 blend, tblend]

e [39.10.1 Examples|

9.11 boxblu

® [39.11.1 Examples|

9.12 bwdif]
[39.13 chromakey|
® [39.13.1 Examples|
9.14 ciescope]
[39.15 codecview]

® [39.15.1 Examples|
[39.16 colorbalance]

® [39.16.1 Examples|
39.17 colorke

® [39.17.1 Examples|
[39.18 colorlevels|

® [39.18.1 Examples|
[39.19 colorchannelmixer|

® [39.19.1 Examples|
[39.20 colormatrix]
[39.21 colorspace]
[39.22 convolution|

® [39.22.1 Examples|

9.23 convolve

9.24 copy|
[39.25 coreimage]

® [39.25.1 Examples|

9.26 crop

® [39.26.1 Examples|

® [39.26.2 Commands|

o

wwwi
2]

O OO O0OO0OO0OO0OO0OOo

O
i

o
i

o

O
]

O

o

O

O

o

O

O

O

o
!i

o

O

O
i

O [39.27 cropdetect]
O [39.28 curves|

® [39.28.1 Examples|
O [39.29 datascope]
o
® [39.30.1 Examples|
9.31 deban
9.32 decimate
9.33 deflate
9.34 deflicke
9.35 dejudde
9.36 delogo|
® [39.36.1 Examples|
O [39.37 deshake]
o
O [39.39 detelecine]
o
o

® [39.41.1 Examples|
o

® [39.42.1 Examples|
o

® [39.43.1 Examples|
o

°

® [39.44.2 Text expansion|

® [39.44.3 Examples|
O [39.45 edgedetect]

® [39.45.1 Examples|
o

® [39.46.1 Commands|
o
O [39.48 extractplanes|

® [39.48.1 Examples|
o
o

® [39.50.1 Examples|
o

® [39.51.1 Examples|
o
o
O [39.54 fieldmatchl|

® [39.54.1 p/c/n/u/b meaning]

[8)

wwiwi
o

O O O O OO0

[O8)

o
o
® [39.54.2 Examples|
O [39.55 fieldorder
o
o
® [39.57.1 Examples|
O 39.58 cover rect|
® [39.58.1 Examples|
o
o
® [39.60.1 Examples|
o
® [39.61.1 Examples|
O [39.62 framepack|
o
O [39.64 framestep)
o
® [39.65.1 Examples|
o
o
o
® [39.68.1 Examples|
o
® [39.69.1 Examples|
o
® [39.70.1 Workflow examples|
O [39.70.1.1 Hald CLUT video stream|
O [39.70.1.2 Hald CLUT with preview|
o
o
O 39.73 histogram|
® [39.73.1 Examples|
o
O [39.75 hwdownload|
o
O 39.77 hwupload|
O [39.78 hwupload_cudal
O 139.79 hq
O [39.80 hstack
O [39.81 hue
® [39.81.1 Examples|
® [39.81.2 Commands|

wi
>

[8)

9.83 idet

9.841

9.85 inflate

9.86 interlace]

9.87 kerndeint

® [39.87.1 Examples|
O [39.88 lenscorrection|

® [39.88.1 Options|

O O OO OO0

9] [G9] [Go] [G9] [S9] [C9]
O

o0

0o

=

e k<
w2

8

o]

=

o

w

2.

1728

9.90 limite
9.91 loop
9.92 1ut3
9.93 lumake
O [39.94 lut, lutrgb, lutyuv]|
® [39.94.1 Examples|
O [39.95 lut2, tlut2|
® [39.95.1 Examples|
O [39.96 maskedclamp|
O 39.97 maskedmerge]
O [39.98 mcdein
O [39.99 mergeplanes|
® [39.99.1 Examples|
O [39.100 mestimate]
O 39.101 midequalizer]
O [39.102 minterpolate]
O [39.103 mpdecimate]
O 39.104 negate
O [39.105 nlmeans|
O [39.106 nnedi
O [39.107 noformat]
e [39.107.1 Examples|
9.108 noise
® [39.108.1 Examples|
9.109 nu
9.110 oc
9.111 oc
® [39.111.1 dilate
® |39.111.2 erode]
® [39.111.3 smooth|
O [39.112 oscilloscope]
® [39.112.1 Examples|
O [39.113 overla

O O O OO0

W] [[WI] [Wo] [
\O

o0

\O

—_—

=

on

<

o 8
o

o

O8]

—_

o O O
IIw
I< l

i

® [39.113.1 Commands|
e [39.113.2 Examples|
O [39.114 owdenoise]
o
® [39.115.1 Examples|
O [39.116 palettegen|
® [39.116.1 Examples|
O 39.117 paletteuse]
® [39.117.1 Examples|
O [39.118 perspective]
o
O [39.120 pixdesctest]
O 39.121 pixscopel
o
® [39.122.1 Examples|
o
O [39.124 premultiply|
o
O 39.126 pseudocolor]
® [39.126.1 Examples|
o
o
o
® [39.129.1 Examples|
o
O 39.131 readeia60§|
® [39.131.1 Examples|
o
® [39.132.1 Examples|
o
O [39.134 removegrain|
O 39.135 removelogo|
O [39.136 repeatfields|
o
® [39.137.1 Examples|
o
o
® [39.139.1 Examples|
® [39.139.2 Commands|

39.141 scale]
® [39.141.1 Options|
® [39.141.2 Examples|

O
O

o O

O

O O

O O OO

o O O

o O

!

O

O OO0 OO0 O0OO0 o

o o

o O

® [39.141.3 Commands|
[39.142 scale nppl|
[39.143 scale2ref]

® [39.143.1 Examples|
[39.144 selectivecolor]

® [39.144.1 Examples|
[39.145 separatefields|
[39.146 setdar, setsar]

® [39.146.1 Examples|
[39.148 showinfo|
[39.149 showpalette]
[39.150 shuffleframes|

® [39.150.1 Examples|
[39.151 shuffleplanes|

® [39.151.1 Examples|
[39.152 signalstats|

® [39.152.1 Examples|
[39.153 signature]

® [39.153.1 Examples|
[39.154 smartblur

9.155 ssi
[39.156 stereo3d|

® [39.156.1 Examples|
[39.157 streamselect, astreamselect|
® [39.157.1 Commands|
® [39.157.2 Examples|
9.158 sobel
9.159 spp
9.160 subtitles

[8)

R [S9][G3] [GI] [
ol|1e
))
o\ 1[®))
(N1}
e
215
U('D
»—g"‘
o ||
S|
.:Lm

=t

9.163 swapu
9.164 telecine|
[39.165 threshold|

® [39.165.1 Examples|
[39.166 thumbnaill

® [39.166.1 Examples|
39.167 tile

® [39.167.1 Examples|
[39.168 tinterlace]
[39.169 tonemap)|

® [39.169.1 Options|

[8)

[39.170 transpose]

9.171 tri
[39.172 unpremultiply|

9.173 unsharp

® [39.173.1 Examples|

9.174 uspp
[39.175 vaguedenoiser]
[39.176 vectorscope]
[39.177 vidstabdetect]

® [39.177.1 Examples|
[39.178 vidstabtransform|
® [39.178.1 Options|
® [39.178.2 Examples|
9.179 vilip
9.180 vignette]
® [39.180.1 Expressions|
® [39.180.2 Examples|
[39.181 vmafmotion|

9.182 vstac

9.183 w3fdif]

[39.184 waveform|
[39.185 weave, doubleweave]
® [39.185.1 Examples|

9.186 xb

9.187 yadif
[39.188 zoompan|

® [39.188.1 Examples|

O [39.189 zscale
® [39.189.1 Options|
® |40 Video Sources|
O H0.1 buffe
O H0.2 cellauto

e [40.2.1 Examples|
0.3 coreimagesrc|

e |40.3.1 Examples|
0.4 mandelbrot|
40.5 mptestsrc
40.6 freiOr_src
40.7 life]

e [40.7.1 Examples|
0.8 allreb, allyuv, color, haldclutsrc, nullsre, rebtestsrc, smptebars, smptehdbars, testsrc,|
[testsrc2, yuvtestsrc]

e [40.8.1 Commands|

!

O O O O

!

!

O O O O

O

o
i

O
]

iI

O O O O O

o

o
!I

o

I

O

O O O O

O

J
® (42 Multimedia Filters|
o

|2.2 ahistogram|
2.3 aphasemetey]
2.4 avectorscopel

e [42.4.1 Examples|
2.5 bench, abench|

e |42.5.1 Examples|

e [42.6.1 Examples|
i2.7 draweraph, adraweraph|

® [42.8.1 Examples|
2.9 interleave, ainterleave]

e [42.9.1 Examples|
K42.10 metadata, ametadatal

e [42.10.1 Examples|
i2.11 perms, aperms|
i2.12 realtime, arealtime]
42.13 select, aselect]

e [42.13.1 Examples|
K2.14 sendcmd, asendemd|

e [42.14.1 Commands syntax|

® [42.14.2 Examples|
i2.15 setpts, asetpts|

® |42.15.1 Examples|
|42.16 settb, asettb|

® [42.16.1 Examples|

® [42.17.1 Examples|
42.18 showfreqs|
42.19 showspectrum|

® [42.19.1 Examples|
i2.20 showspectrumpic]

e [42.20.1 Examples|
42.21 showvolume]
2.22 showwaves|

® |42.22.1 Examples|
i2.23 showwavespic|

e [42.23.1 Examples|

O
O

o O O

O

o

o

O

O

o

O

O

O

o

O

o

o

O

O

o

O

O

o

O W42.24 sidedata, asidedatal
O K2.25 spectrumsynth|
® [42.25.1 Examples|
O |42.26 split, asplif]
® |42.26.1 Examples|
O W2.27 zmq, azmg|
e [42.27.1 Examples|
® |43 Multimedia Sources|
o
o
e |43.2.1 Examples|
e [43.2.2 Commands|
°
J

1 Synopsis#[TOC

ffmpeg [global_options] {[input_file_options] -i input_url} ... {[output_file_options] output_url}

2 Descriptionfi[TOC

ffmpegq is a very fast video and audio converter that can also grab from a live audio/video source. It can
also convert between arbitrary sample rates and resize video on the fly with a high quality polyphase filter.

f fmpeg reads from an arbitrary number of input "files" (which can be regular files, pipes, network
streams, grabbing devices, etc.), specified by the —i option, and writes to an arbitrary number of output
"files", which are specified by a plain output url. Anything found on the command line which cannot be
interpreted as an option is considered to be an output url.

Each input or output url can, in principle, contain any number of streams of different types
(video/audio/subtitle/attachment/data). The allowed number and/or types of streams may be limited by the
container format. Selecting which streams from which inputs will go into which output is either done
automatically or with the —map option (see the Stream selection chapter).

To refer to input files in options, you must use their indices (0-based). E.g. the first input file is 0, the
second is 1, etc. Similarly, streams within a file are referred to by their indices. E.g. 2 : 3 refers to the
fourth stream in the third input file. Also see the Stream specifiers chapter.

As a general rule, options are applied to the next specified file. Therefore, order is important, and you can
have the same option on the command line multiple times. Each occurrence is then applied to the next
input or output file. Exceptions from this rule are the global options (e.g. verbosity level), which should be
specified first.

Do not mix input and output files — first specify all input files, then all output files. Also do not mix
options which belong to different files. All options apply ONLY to the next input or output file and are
reset between files.

® To set the video bitrate of the output file to 64 kbit/s:

ffmpeg -i input.avi -b:v 64k -bufsize 64k output.avi
® To force the frame rate of the output file to 24 fps:

ffmpeg —i input.avi -r 24 output.avi

® To force the frame rate of the input file (valid for raw formats only) to 1 fps and the frame rate of the
output file to 24 fps:

ffmpeg -r 1 -i input.m2v -r 24 output.avi

The format option may be needed for raw input files.

3 Detailed description#] TOC

The transcoding process in £ fmpeg for each output can be described by the following diagram:

| |
| input | demuxer | encoded data | decoder
| file | ————————- > | packets | ————- +
| | | | |
v
| |
| decoded |
| frames |
| |
|
| | | | |
| output | <———————= | encoded data | <————+
| file | muxer | packets | encoder
| | |

ffmpegq calls the libavformat library (containing demuxers) to read input files and get packets containing
encoded data from them. When there are multiple input files, £ fmpegq tries to keep them synchronized by
tracking lowest timestamp on any active input stream.

Encoded packets are then passed to the decoder (unless streamcopy is selected for the stream, see further
for a description). The decoder produces uncompressed frames (raw video/PCM audio/...) which can be
processed further by filtering (see next section). After filtering, the frames are passed to the encoder,
which encodes them and outputs encoded packets. Finally those are passed to the muxer, which writes the
encoded packets to the output file.

3.1 Filtering#TOQ

Before encoding, £ fmpeg can process raw audio and video frames using filters from the libavfilter
library. Several chained filters form a filter graph. £ fmpeg distinguishes between two types of
filtergraphs: simple and complex.

3.1.1 Simple filtergraphs#]

Simple filtergraphs are those that have exactly one input and output, both of the same type. In the above
diagram they can be represented by simply inserting an additional step between decoding and encoding:

decoded		encoded data
frames	\ _	packets
	A /11	
\ - /
simple Y | / encoder
filtergraph filtered |/

|
|
| frames |
[

Simple filtergraphs are configured with the per-stream —filter option (with —vf and —af aliases for
video and audio respectively). A simple filtergraph for video can look for example like this:

| | | | | | | |
| input | -——> | deinterlace | -—--> | scale | ———> | output |

Note that some filters change frame properties but not frame contents. E.g. the fps filter in the example
above changes number of frames, but does not touch the frame contents. Another example is the setpts
filter, which only sets timestamps and otherwise passes the frames unchanged.

3.1.2 Complex filtergraphs#]

Complex filtergraphs are those which cannot be described as simply a linear processing chain applied to
one stream. This is the case, for example, when the graph has more than one input and/or output, or when
output stream type is different from input. They can be represented with the following diagram:

|
| input 0 |\
|

| \ | |
\ /| output 0 |
\ N PR
\| complex | /
| | | |/
| input 1 |---->| filter |\
| | [
/| graph |\ | |
/| | \| output 1 |

AN — |

| | /
| input 2 |/
|

Complex filtergraphs are configured with the ~-filter_complex option. Note that this option is global,
since a complex filtergraph, by its nature, cannot be unambiguously associated with a single stream or file.

The —1avfi option is equivalentto —filter_complex.

A trivial example of a complex filtergraph is the overlay filter, which has two video inputs and one
video output, containing one video overlaid on top of the other. Its audio counterpart is the amix filter.

3.2 Stream copy#j[TO(

Stream copy is a mode selected by supplying the copy parameter to the —codec option. It makes

f fmpeg omit the decoding and encoding step for the specified stream, so it does only demuxing and
muxing. It is useful for changing the container format or modifying container-level metadata. The diagram
above will, in this case, simplify to this:

input	demuxer	encoded data	muxer	output
file	———————— >	packets	——————- >	file
— | |

Since there is no decoding or encoding, it is very fast and there is no quality loss. However, it might not
work in some cases because of many factors. Applying filters is obviously also impossible, since filters
work on uncompressed data.

4 Stream selection# TOC

By default, £ fmpeg includes only one stream of each type (video, audio, subtitle) present in the input
files and adds them to each output file. It picks the "best" of each based upon the following criteria: for
video, it is the stream with the highest resolution, for audio, it is the stream with the most channels, for
subtitles, it is the first subtitle stream. In the case where several streams of the same type rate equally, the
stream with the lowest index is chosen.

You can disable some of those defaults by using the —vn/-an/-sn/~-dn options. For full manual
control, use the —map option, which disables the defaults just described.

5 Options#[TOC

All the numerical options, if not specified otherwise, accept a string representing a number as input, which
may be followed by one of the SI unit prefixes, for example: 'K’, "M’, or ’G’.

If °1” is appended to the SI unit prefix, the complete prefix will be interpreted as a unit prefix for binary
multiples, which are based on powers of 1024 instead of powers of 1000. Appending 'B’ to the SI unit
prefix multiplies the value by 8. This allows using, for example: ’KB’, "MiB’, ’G’ and ’B’ as number
suffixes.

Options which do not take arguments are boolean options, and set the corresponding value to true. They
can be set to false by prefixing the option name with "no". For example using "-nofoo" will set the boolean
option with name "foo" to false.

5.1 Stream specifiers#]

Some options are applied per-stream, e.g. bitrate or codec. Stream specifiers are used to precisely specify
which stream(s) a given option belongs to.

A stream specifier is a string generally appended to the option name and separated from it by a colon. E.g.
—codec:a:1 ac3 contains the a: 1 stream specifier, which matches the second audio stream.
Therefore, it would select the ac3 codec for the second audio stream.

A stream specifier can match several streams, so that the option is applied to all of them. E.g. the stream
specifier in -b:a 128k matches all audio streams.

An empty stream specifier matches all streams. For example, ~codec copy or —codec: copy would
copy all the streams without reencoding.

Possible forms of stream specifiers are:
stream index

Matches the stream with this index. E.g. —threads:1 4 would set the thread count for the second
stream to 4.

stream typel:stream_index]

stream_type is one of following: v’ or V’ for video, ’a’ for audio, ’s’ for subtitle, d’ for data, and
’t’ for attachments. *v’ matches all video streams, *V’ only matches video streams which are not
attached pictures, video thumbnails or cover arts. If stream_index is given, then it matches stream
number stream_index of this type. Otherwise, it matches all streams of this type.

p:program _id[:stream index]

If stream_index is given, then it matches the stream with number stream_index in the program with
the id program_id. Otherwise, it matches all streams in the program.

#stream _id or 1i:stream_id

Match the stream by stream id (e.g. PID in MPEG-TS container).

m:keyl:value]

Matches streams with the metadata tag key having the specified value. If value is not given, matches
streams that contain the given tag with any value.

Matches streams with usable configuration, the codec must be defined and the essential information
such as video dimension or audio sample rate must be present.

Note that in £ fmpeg, matching by metadata will only work properly for input files.

5.2 Generic options#]

These options are shared amongst the ff* tools.
-L

Show license.
-h, -?, -help, —-help [arg]

Show help. An optional parameter may be specified to print help about a specific item. If no
argument is specified, only basic (non advanced) tool options are shown.

Possible values of arg are:
long

Print advanced tool options in addition to the basic tool options.
full

Print complete list of options, including shared and private options for encoders, decoders,
demuxers, muxers, filters, etc.

decoder=decoder_ name

Print detailed information about the decoder named decoder_name. Use the —decoders option
to get a list of all decoders.

encoder=encoder_name

Print detailed information about the encoder named encoder_name. Use the —encoders option
to get a list of all encoders.

demuxer=demuxer_name

Print detailed information about the demuxer named demuxer_name. Use the —format s option
to get a list of all demuxers and muxers.

muxer=muxer_name

Print detailed information about the muxer named muxer_name. Use the —format s option to
get a list of all muxers and demuxers.

filter=filter name

Print detailed information about the filter name filter_name. Use the —filters option to geta
list of all filters.

-version
Show version.
—formats
Show available formats (including devices).
—demuxers
Show available demuxers.
-muxers
Show available muxers.
—devices
Show available devices.
—codecs
Show all codecs known to libavcodec.

Note that the term ’codec’ is used throughout this documentation as a shortcut for what is more
correctly called a media bitstream format.

—decoders
Show available decoders.
—encoders

Show all available encoders.

-bsfs
Show available bitstream filters.
—-protocols
Show available protocols.
—filters
Show available libavfilter filters.
-pix_fmts
Show available pixel formats.
—-sample_fmts
Show available sample formats.
—-layouts
Show channel names and standard channel layouts.
—colors
Show recognized color names.
—-sources devicel,optl=valll[,optl2=vall]...]

Show autodetected sources of the input device. Some devices may provide system-dependent source
names that cannot be autodetected. The returned list cannot be assumed to be always complete.

ffmpeg —-sources pulse,server=192.168.0.4
-sinks devicel,optl=valll[,opt2=vall]...]

Show autodetected sinks of the output device. Some devices may provide system-dependent sink
names that cannot be autodetected. The returned list cannot be assumed to be always complete.

ffmpeg -sinks pulse,server=192.168.0.4

—loglevel [repeat+]loglevel | -v [repeat+]loglevel

Set the logging level used by the library. Adding "repeat+" indicates that repeated log output should
not be compressed to the first line and the "Last message repeated n times" line will be omitted.
"repeat" can also be used alone. If "repeat” is used alone, and with no prior loglevel set, the default
loglevel will be used. If multiple loglevel parameters are given, using 'repeat’ will not change the
loglevel. loglevel is a string or a number containing one of the following values:

‘quiet, -8’
Show nothing at all; be silent.
‘panic, 0’

Only show fatal errors which could lead the process to crash, such as an assertion failure. This is
not currently used for anything.

‘fatal, 8’

Only show fatal errors. These are errors after which the process absolutely cannot continue.
‘error, 16’

Show all errors, including ones which can be recovered from.
‘warning, 24’

Show all warnings and errors. Any message related to possibly incorrect or unexpected events
will be shown.

‘info, 32’

Show informative messages during processing. This is in addition to warnings and errors. This is
the default value.

‘verbose, 40’

Same as info, except more verbose.
‘debug, 48’

Show everything, including debugging information.
‘trace, 56’

By default the program logs to stderr. If coloring is supported by the terminal, colors are used to mark
errors and warnings. Log coloring can be disabled setting the environment variable
AV_LOG_FORCE_NOCOLOR or NO_COLOR, or can be forced setting the environment variable
AV_LOG_FORCE_COLOR. The use of the environment variable NO_COLOR is deprecated and will
be dropped in a future FFmpeg version.

—report

Dump full command line and console output to a file named program-YYYYMMDD-HHMMSS . 1og
in the current directory. This file can be useful for bug reports. It also implies —1oglevel
verbose.

Setting the environment variable FFREPORT to any value has the same effect. If the value is a
*:’-separated key=value sequence, these options will affect the report; option values must be escaped if
they contain special characters or the options delimiter *:” (see the “Quoting and escaping” section in the
ffmpeg-utils manual).

The following options are recognized:
file

set the file name to use for the report; $p is expanded to the name of the program, %t is
expanded to a timestamp, %% is expanded to a plain %

level
set the log verbosity level using a numerical value (see ~loglevel).

For example, to output a report to a file named ffreport . log using a log level of 32 (alias for
log level info):

FFREPORT=file=ffreport.log:level=32 ffmpeg —-i input output

Errors in parsing the environment variable are not fatal, and will not appear in the report.
—hide_banner

Suppress printing banner.

All FFmpeg tools will normally show a copyright notice, build options and library versions. This
option can be used to suppress printing this information.

—cpuflags flags (global)

Allows setting and clearing cpu flags. This option is intended for testing. Do not use it unless you
know what you’re doing.

ffmpeg -cpuflags —-sse+mmx ...
ffmpeg -cpuflags mmx ...
ffmpeg -cpuflags 0 ...

Possible flags for this option are:

‘x86’
-
‘mmxext’
‘sse’
‘sse2’
‘sse2slow’
‘sse3’

‘sse3slow’
‘ssse3’
‘atom’
‘ssed.l’
‘ssed .2’
‘avx’
‘avx?2’
‘xop’
‘fma3’
‘fmad’
‘3dnow’
‘3dnowext’
‘bmil’
‘bmi?2’
‘cmov’
‘ARM’
‘armvbte’
‘armvé’
‘armv6t?2’
“VEp’
‘vipv3’
‘neon’
‘setend’
‘AArché64’
‘armv8’
“VEp’
‘neon’
‘PowerPC’
‘altivec’
‘Specific Processors’
‘pentium2’
‘pentium3’
‘pentiumd’
k6’
‘k62’
‘athlon’
‘athlonxp’
kg’
—opencl_bench

This option is used to benchmark all available OpenCL devices and print the results. This option is
only available when FFmpeg has been compiled with ——enable-opencl.

When FFmpeg is configured with ——enable-openc]l, the options for the global OpenCL context
are set via —opencl_options. See the "OpenCL Options" section in the ffmpeg-utils manual for
the complete list of supported options. Amongst others, these options include the ability to select a
specific platform and device to run the OpenCL code on. By default, FFmpeg will run on the first

device of the first platform. While the options for the global OpenCL context provide flexibility to
the user in selecting the OpenCL device of their choice, most users would probably want to select the
fastest OpenCL device for their system.

This option assists the selection of the most efficient configuration by identifying the appropriate
device for the user’s system. The built-in benchmark is run on all the OpenCL devices and the
performance is measured for each device. The devices in the results list are sorted based on their
performance with the fastest device listed first. The user can subsequently invoke f fmpeg using the
device deemed most appropriate via —opencl_options to obtain the best performance for the
OpenCL accelerated code.

Typical usage to use the fastest OpenCL device involve the following steps.
Run the command:
ffmpeg —-opencl_bench

Note down the platform ID (pidx) and device ID (didx) of the first i.e. fastest device in the list. Select
the platform and device using the command:

ffmpeg -opencl_options platform_ idx=pidx:device_idx=didx ...

—-opencl_options options (global)

Set OpenCL environment options. This option is only available when FFmpeg has been compiled
with ——enable-opencl.

options must be a list of key=value option pairs separated by ’:’. See the “OpenCL Options” section
in the ffmpeg-utils manual for the list of supported options.

5.3 AVOptions#]

These options are provided directly by the libavformat, libavdevice and libavcodec libraries. To see the list
of available AVOptions, use the —he 1p option. They are separated into two categories:

generic

These options can be set for any container, codec or device. Generic options are listed under
AVFormatContext options for containers/devices and under AVCodecContext options for codecs.

private

These options are specific to the given container, device or codec. Private options are listed under
their corresponding containers/devices/codecs.

For example to write an ID3v2.3 header instead of a default ID3v2.4 to an MP3 file, use the
id3v2_version private option of the MP3 muxer:

ffmpeg -i input.flac -id3v2_version 3 out.mp3
All codec AVOptions are per-stream, and thus a stream specifier should be attached to them.
Note: the —-nooption syntax cannot be used for boolean AVOptions, use —option 0/-option 1.

Note: the old undocumented way of specifying per-stream AVOptions by prepending v/a/s to the options
name is now obsolete and will be removed soon.

5.4 Main options#TO(C]

-f fmt (input/output)

Force input or output file format. The format is normally auto detected for input files and guessed
from the file extension for output files, so this option is not needed in most cases.

-i url (input)
input file url
-y (global)
Overwrite output files without asking.
-n (global)
Do not overwrite output files, and exit immediately if a specified output file already exists.
—-stream_loop number (input)
Set number of times input stream shall be looped. Loop 0 means no loop, loop -1 means infinite loop.

—c[:stream_specifier] codec (input/output,per—-stream)
—codec|[:stream specifier] codec (input/output,per—-stream)

Select an encoder (when used before an output file) or a decoder (when used before an input file) for
one or more streams. codec is the name of a decoder/encoder or a special value copy (output only) to
indicate that the stream is not to be re-encoded.

For example

ffmpeg —-i INPUT -map 0 —-c:v 1ibx264 -c:a copy OUTPUT
encodes all video streams with 1ibx264 and copies all audio streams.
For each stream, the last matching c option is applied, so

ffmpeg —-i INPUT -map 0 -c copy —-c:v:1l 1ibx264 -c:a:137 libvorbis OUTPUT

-t

will copy all the streams except the second video, which will be encoded with 1ibx264, and the 138th
audio, which will be encoded with libvorbis.

duration (input/output)
When used as an input option (before —1), limit the duration of data read from the input file.

When used as an output option (before an output url), stop writing the output after its duration
reaches duration.

duration must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

-to and -t are mutually exclusive and -t has priority.

-to position (output)

Stop writing the output at position. position must be a time duration specification, see
(ffmpeg-utils)the Time duration section in the ffmpeg-utils(1) manual.

-to and -t are mutually exclusive and -t has priority.

—-fs 1imit_size (output)

Set the file size limit, expressed in bytes. No further chunk of bytes is written after the limit is
exceeded. The size of the output file is slightly more than the requested file size.

-ss position (input/output)

When used as an input option (before —1), seeks in this input file to position. Note that in most
formats it is not possible to seek exactly, so £ fmpeg will seek to the closest seek point before
position. When transcoding and —accurate_seek is enabled (the default), this extra segment
between the seek point and position will be decoded and discarded. When doing stream copy or when
—-noaccurate_seek is used, it will be preserved.

When used as an output option (before an output url), decodes but discards input until the timestamps
reach position.

position must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

-sseof position (input/output)

Like the —ss option but relative to the "end of file". That is negative values are earlier in the file, O is
at EOF.

—itsoffset offset (input)

Set the input time offset.

offset must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

The offset is added to the timestamps of the input files. Specifying a positive offset means that the
corresponding streams are delayed by the time duration specified in offset.

—timestamp date (output)

Set the recording timestamp in the container.

date must be a date specification, see (ffmpeg-utils)the Date section in the ffmpeg-utils(1) manual.
-metadatal[:metadata_specifier] key=value (output,per-metadata)

Set a metadata key/value pair.

An optional metadata_specifier may be given to set metadata on streams, chapters or programs. See
-map_metadata documentation for details.

This option overrides metadata set with -map_metadata. It is also possible to delete metadata by
using an empty value.

For example, for setting the title in the output file:

ffmpeg -1 in.avi -metadata title="my title" out.flv

To set the language of the first audio stream:

ffmpeg —-i INPUT -metadata:s:a:0 language=eng OUTPUT
—disposition[:stream specifier] value (output,per-stream)

Sets the disposition for a stream.

This option overrides the disposition copied from the input stream. It is also possible to delete the
disposition by setting it to O.

The following dispositions are recognized:

default
dub
original
comment
lyrics
karaoke
forced

hearing_impaired
visual_impaired
clean_effects
captions
descriptions
metadata

For example, to make the second audio stream the default stream:

ffmpeg -i in.mkv -disposition:a:1l default out.mkv

To make the second subtitle stream the default stream and remove the default disposition from the
first subtitle stream:

ffmpeg —-i INPUT -disposition:s:0 0 -disposition:s:1 default OUTPUT

-program
[title=title:] [program_num=program_num:]st=stream|:st=stream...]
(output)

Creates a program with the specified title, program_num and adds the specified stream(s) to it.
—target type (output)
Specify target file type (vcd, sved, dvd, dv, dv50). type may be prefixed with pal-, ntsc— or

£1ilm- to use the corresponding standard. All the format options (bitrate, codecs, buffer sizes) are
then set automatically. You can just type:

ffmpeg —-i myfile.avi —-target vcd /tmp/vcd.mpg

Nevertheless you can specify additional options as long as you know they do not conflict with the
standard, as in:

ffmpeg -i myfile.avi -target vcd -bf 2 /tmp/vcd.mpg

—dframes number (output)

Set the number of data frames to output. This is an obsolete alias for —frames : d, which you should
use instead.

—frames|[:stream_specifier] framecount (output,per-stream)
Stop writing to the stream after framecount frames.

—-qgl:stream specifier] g (output,per—-stream)
—gscale|:stream_specifier] q (output,per-stream)

Use fixed quality scale (VBR). The meaning of g/gscale is codec-dependent. If gscale is used without
a stream_specifier then it applies only to the video stream, this is to maintain compatibility with
previous behavior and as specifying the same codec specific value to 2 different codecs that is audio

and video generally is not what is intended when no stream_specifier is used.
—filter|[:stream_specifier] filtergraph (output,per-stream)
Create the filtergraph specified by filtergraph and use it to filter the stream.

filtergraph is a description of the filtergraph to apply to the stream, and must have a single input and
a single output of the same type of the stream. In the filtergraph, the input is associated to the label
in, and the output to the label out. See the ffmpeg-filters manual for more information about the
filtergraph syntax.

See the [Hilter_complex option|if you want to create filtergraphs with multiple inputs and/or outputs.

—filter_script[:stream specifier] filename (output,per-stream)

This option is similar to —£ilter, the only difference is that its argument is the name of the file
from which a filtergraph description is to be read.

—filter_threads nb_threads (global)

Defines how many threads are used to process a filter pipeline. Each pipeline will produce a thread
pool with this many threads available for parallel processing. The default is the number of available
CPUs.

-prel:stream_specifier] preset_name (output,per-stream)
Specify the preset for matching stream(s).
-stats (global)

Print encoding progress/statistics. It is on by default, to explicitly disable it you need to specify
-nostats.

-progress url (global)
Send program-friendly progress information to url.

Progress information is written approximately every second and at the end of the encoding process. It
1s made of "key=value" lines. key consists of only alphanumeric characters. The last key of a
sequence of progress information is always "progress".

—-stdin

Enable interaction on standard input. On by default unless standard input is used as an input. To
explicitly disable interaction you need to specify —-nostdin.

Disabling interaction on standard input is useful, for example, if ffmpeg is in the background process
group. Roughly the same result can be achieved with £ fmpeg ... < /dev/null but it requires
a shell.

—debug_ts (global)

Print timestamp information. It is off by default. This option is mostly useful for testing and
debugging purposes, and the output format may change from one version to another, so it should not
be employed by portable scripts.

See also the option —fdebug ts.
—attach filename (output)

Add an attachment to the output file. This is supported by a few formats like Matroska for e.g. fonts
used in rendering subtitles. Attachments are implemented as a specific type of stream, so this option
will add a new stream to the file. It is then possible to use per-stream options on this stream in the
usual way. Attachment streams created with this option will be created after all the other streams (i.e.
those created with —map or automatic mappings).

Note that for Matroska you also have to set the mimetype metadata tag:

ffmpeg —-i INPUT -attach DejaVuSans.ttf -metadata:s:2 mimetype=application/x-truetype-font out.mkv
(assuming that the attachment stream will be third in the output file).
—dump_attachment [: stream_specifier] filename (input,per-stream)

Extract the matching attachment stream into a file named filename. If filename is empty, then the
value of the £ilename metadata tag will be used.

E.g. to extract the first attachment to a file named ’out.ttf*:

ffmpeg —-dump_attachment:t:0 out.ttf -i INPUT

To extract all attachments to files determined by the £ilename tag:

ffmpeg —-dump_attachment:t "" -i INPUT

Technical note — attachments are implemented as codec extradata, so this option can actually be used
to extract extradata from any stream, not just attachments.

—noautorotate

Disable automatically rotating video based on file metadata.

5.5 Video Options#[TOC]

-vframes number (output)

Set the number of video frames to output. This is an obsolete alias for —~frames : v, which you
should use instead.

-r[:stream _specifier] fps (input/output,per—-stream)
Set frame rate (Hz value, fraction or abbreviation).

As an input option, ignore any timestamps stored in the file and instead generate timestamps
assuming constant frame rate fps. This is not the same as the —~framerate option used for some
input formats like image?2 or v412 (it used to be the same in older versions of FFmpeg). If in doubt
use —framerate instead of the input option —r.

As an output option, duplicate or drop input frames to achieve constant output frame rate fps.
-s[:stream_specifier] size (input/output,per—-stream)
Set frame size.

As an input option, this is a shortcut for the video_size private option, recognized by some
demuxers for which the frame size is either not stored in the file or is configurable — e.g. raw video or
video grabbers.

As an output option, this inserts the scale video filter to the end of the corresponding filtergraph.
Please use the scale filter directly to insert it at the beginning or some other place.

The format is ‘wxh’ (default - same as source).
—aspect |[:stream_specifier] aspect (output,per—-stream)
Set the video display aspect ratio specified by aspect.

aspect can be a floating point number string, or a string of the form num:den, where num and den are
the numerator and denominator of the aspect ratio. For example "4:3", "16:9", "1.3333", and "1.7777"
are valid argument values.

If used together with —vcodec copy, it will affect the aspect ratio stored at container level, but not
the aspect ratio stored in encoded frames, if it exists.

-vn (output)

Disable video recording.
—vcodec codec (output)

Set the video codec. This is an alias for —codec:v.
-pass[:stream specifier] n (output,per-stream)

Select the pass number (1 or 2). It is used to do two-pass video encoding. The statistics of the video
are recorded in the first pass into a log file (see also the option -passlogfile), and in the second pass
that log file is used to generate the video at the exact requested bitrate. On pass 1, you may just
deactivate audio and set output to null, examples for Windows and Unix:

ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y NUL
ffmpeg -1 foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y /dev/null

-passlogfile[:stream specifier] prefix (output,per—-stream)

Set two-pass log file name prefix to prefix, the default file name prefix is “ffmpeg2pass”. The
complete file name will be PREFIX-N. log, where N is a number specific to the output stream

-vf filtergraph (output)
Create the filtergraph specified by filtergraph and use it to filter the stream.

This is an alias for -filter:v, see the[-filter option]
5.6 Advanced Video options#]

-pix_fmt[:stream_specifier] format (input/output,per—-stream)

Set pixel format. Use —pix_fmts to show all the supported pixel formats. If the selected pixel
format can not be selected, ffmpeg will print a warning and select the best pixel format supported by
the encoder. If pix_fmt is prefixed by a +, ffmpeg will exit with an error if the requested pixel format
can not be selected, and automatic conversions inside filtergraphs are disabled. If pix_fint is a single
+, ffmpeg selects the same pixel format as the input (or graph output) and automatic conversions are
disabled.

-sws_flags flags (input/output)
Set SwScaler flags.
-vdt n
Discard threshold.
—-rc_override[:stream specifier] override (output,per-stream)

Rate control override for specific intervals, formatted as "int,int,int" list separated with slashes. Two
first values are the beginning and end frame numbers, last one is quantizer to use if positive, or
quality factor if negative.

-ilme

Force interlacing support in encoder (MPEG-2 and MPEG-4 only). Use this option if your input file
is interlaced and you want to keep the interlaced format for minimum losses. The alternative is to
deinterlace the input stream with —deinterlace, but deinterlacing introduces losses.

-psnr

Calculate PSNR of compressed frames.
—-vstats
Dump video coding statistics to vstats_HHMMSS. log.
-vstats_file file
Dump video coding statistics to file.
-vstats_version file
Specifies which version of the vstats format to use. Default is 2.
version=1:

frame= %5d g= %2.1f PSNR= %6.2f f_size= %6d s_size= %8.0fkB time=
%$0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s

version > 1:

out= %2d st= %2d frame= %5d g= %2.1f PSNR= %6.2f f_size= %6d s_size=
%$8.0fkB time= %0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s

—top|:stream_specifier] n (output,per-stream)
top=1/bottom=0/auto=-1 field first
—-dc precision
Intra_dc_precision.
-vtag fourcc/tag (output)
Force video tag/fourcc. This is an alias for -tag:v.
—gphist (global)
Show QP histogram
—-vbsf bitstream_ filter
Deprecated see -bsf

—force_key_ frames|[:stream specifier] timel[,time...] (output,per—-stream)
—force_key_ frames|[:stream specifier] expr:expr (output,per-stream)

Force key frames at the specified timestamps, more precisely at the first frames after each specified
time.

If the argument is prefixed with expr :, the string expr is interpreted like an expression and is
evaluated for each frame. A key frame is forced in case the evaluation is non-zero.

If one of the times is "chapters|delta]", it is expanded into the time of the beginning of all
chapters in the file, shifted by delta, expressed as a time in seconds. This option can be useful to
ensure that a seek point is present at a chapter mark or any other designated place in the output file.

For example, to insert a key frame at 5 minutes, plus key frames 0.1 second before the beginning of
every chapter:

—force_key_frames 0:05:00, chapters-0.1
The expression in expr can contain the following constants:
n
the number of current processed frame, starting from 0
n_forced
the number of forced frames
prev_forced_n
the number of the previous forced frame, it is NAN when no keyframe was forced yet
prev_forced_t

the time of the previous forced frame, it is NAN when no keyframe was forced yet

the time of the current processed frame

For example to force a key frame every 5 seconds, you can specify:
—force_key_frames expr:gte(t,n_forced*))
To force a key frame 5 seconds after the time of the last forced one, starting from second 13:

—force_key_frames expr:if (isnan (prev_forced_t),gte(t,13),gte(t,prev_forced_t+5))

Note that forcing too many keyframes is very harmful for the lookahead algorithms of certain
encoders: using fixed-GOP options or similar would be more efficient.

—copyinkf[:stream specifier] (output,per-stream)

When doing stream copy, copy also non-key frames found at the beginning.

—init_hw_device typel[=name][:devicel, key=value...]]

Initialise a new hardware device of type type called name, using the given device parameters. If no
name is specified it will receive a default name of the form "type%d".

The meaning of device and the following arguments depends on the device type:
cuda
device is the number of the CUDA device.
dxvaz
device is the number of the Direct3D 9 display adapter.
vaapi

device is either an X11 display name or a DRM render node. If not specified, it will attempt to
open the default X11 display (3DISPLAY) and then the first DRM render node
(/dev/dri/renderD128).

vdpau

device is an X11 display name. If not specified, it will attempt to open the default X11 display
($DISPLAY).

gsv
device selects a value in ‘MFX_IMPI._*’. Allowed values are:

auto

SwW

hw
auto_any
hw_any
hw2

hw3

hwié

If not specified, ‘auto_any’ is used. (Note that it may be easier to achieve the desired result
for QSV by creating the platform-appropriate subdevice (‘dxva2’ or ‘vaapi’) and then
deriving a QSV device from that.)

—init_hw device typel[=name]@source

Initialise a new hardware device of type fype called name, deriving it from the existing device with
the name source.

—-init_hw_device list
List all hardware device types supported in this build of ffmpeg.
—filter_hw_device name

Pass the hardware device called name to all filters in any filter graph. This can be used to set the
device to upload to with the hwupload filter, or the device to map to with the hwmap filter. Other
filters may also make use of this parameter when they require a hardware device. Note that this is
typically only required when the input is not already in hardware frames - when it is, filters will
derive the device they require from the context of the frames they receive as input.

This is a global setting, so all filters will receive the same device.
—hwaccel[:stream specifier] hwaccel (input,per-stream)
Use hardware acceleration to decode the matching stream(s). The allowed values of hwaccel are:
none
Do not use any hardware acceleration (the default).
auto
Automatically select the hardware acceleration method.
vda
Use Apple VDA hardware acceleration.
vdpau
Use VDPAU (Video Decode and Presentation API for Unix) hardware acceleration.
dxva2
Use DXVA2 (DirectX Video Acceleration) hardware acceleration.
vaapi
Use VAAPI (Video Acceleration API) hardware acceleration.
gsv
Use the Intel QuickSync Video acceleration for video transcoding.

Unlike most other values, this option does not enable accelerated decoding (that is used
automatically whenever a qsv decoder is selected), but accelerated transcoding, without copying
the frames into the system memory.

For it to work, both the decoder and the encoder must support QSV acceleration and no filters
must be used.

This option has no effect if the selected hwaccel is not available or not supported by the chosen
decoder.

Note that most acceleration methods are intended for playback and will not be faster than software
decoding on modern CPUs. Additionally, £ fmpeg will usually need to copy the decoded frames
from the GPU memory into the system memory, resulting in further performance loss. This option is
thus mainly useful for testing.

—hwaccel_devicel[:stream specifier] hwaccel_device (input,per-stream)
Select a device to use for hardware acceleration.

This option only makes sense when the ~—hwaccel option is also specified. It can either refer to an
existing device created with —init_hw_device by name, or it can create a new device as if
‘~init_hw_device’ type:hwaccel_device were called immediately before.

—hwaccels

List all hardware acceleration methods supported in this build of ffmpeg.

5.7 Audio Options#[TOC]

—aframes number (output)

Set the number of audio frames to output. This is an obsolete alias for ~frames : a, which you
should use instead.

—ar[:stream_specifier] freq (input/output,per—stream)

Set the audio sampling frequency. For output streams it is set by default to the frequency of the
corresponding input stream. For input streams this option only makes sense for audio grabbing
devices and raw demuxers and is mapped to the corresponding demuxer options.

—aqg g (output)
Set the audio quality (codec-specific, VBR). This is an alias for -q:a.
—ac[:stream_specifier] channels (input/output,per—-stream)

Set the number of audio channels. For output streams it is set by default to the number of input audio
channels. For input streams this option only makes sense for audio grabbing devices and raw
demuxers and is mapped to the corresponding demuxer options.

—an (output)

Disable audio recording.
—acodec codec (input/output)

Set the audio codec. This is an alias for —codec: a.
—-sample_fmt [:stream specifier] sample fmt (output,per-stream)

Set the audio sample format. Use —sample_fmts to get a list of supported sample formats.
—af filtergraph (output)

Create the filtergraph specified by filtergraph and use it to filter the stream.

This is an alias for -filter:a, see the[filter option]
5.8 Advanced Audio options#]

—atag fourcc/tag (output)
Force audio tag/fourcc. This is an alias for -tag: a.
—absf bitstream filter
Deprecated, see -bsf
—guess_layout_max channels (input,per-stream)

If some input channel layout is not known, try to guess only if it corresponds to at most the specified
number of channels. For example, 2 tells to £ fmpeg to recognize 1 channel as mono and 2 channels
as stereo but not 6 channels as 5.1. The default is to always try to guess. Use 0 to disable all guessing.

5.9 Subtitle options#

—-scodec codec (input/output)

Set the subtitle codec. This is an alias for —codec:s.
-sn (output)

Disable subtitle recording.
—-sbsf bitstream filter

Deprecated, see -bsf

5.10 Advanced Subtitle options#

—-fix sub_duration

Fix subtitles durations. For each subtitle, wait for the next packet in the same stream and adjust the
duration of the first to avoid overlap. This is necessary with some subtitles codecs, especially DVB
subtitles, because the duration in the original packet is only a rough estimate and the end is actually
marked by an empty subtitle frame. Failing to use this option when necessary can result in
exaggerated durations or muxing failures due to non-monotonic timestamps.

Note that this option will delay the output of all data until the next subtitle packet is decoded: it may
increase memory consumption and latency a lot.

—canvas_size size

Set the size of the canvas used to render subtitles.

5.11 Advanced options#]

—-map
[-linput_file_id[:stream_specifier] [?][,sync_file_id[:stream specifier]] |
[Iinklabel] (output)

Designate one or more input streams as a source for the output file. Each input stream is identified by
the input file index input_file_id and the input stream index input_stream_id within the input file.
Both indices start at 0. If specified, sync_file_id:stream_specifier sets which input stream is used as a
presentation sync reference.

The first -map option on the command line specifies the source for output stream 0, the second
—map option specifies the source for output stream 1, etc.

A - character before the stream identifier creates a "negative" mapping. It disables matching streams
from already created mappings.

A trailing ? after the stream index will allow the map to be optional: if the map matches no streams
the map will be ignored instead of failing. Note the map will still fail if an invalid input file index is
used; such as if the map refers to a non-existent input.

An alternative [linklabel] form will map outputs from complex filter graphs (see the
-filter_complex option) to the output file. linklabel must correspond to a defined output link
label in the graph.

For example, to map ALL streams from the first input file to output

ffmpeg —-i INPUT -map 0 output

For example, if you have two audio streams in the first input file, these streams are identified by "0:0"
and "0:1". You can use —map to select which streams to place in an output file. For example:

ffmpeg —-i INPUT -map 0:1 out.wav
will map the input stream in INPUT identified by "0:1" to the (single) output stream in out . wav.

For example, to select the stream with index 2 from input file a . mov (specified by the identifier
"0:2"), and stream with index 6 from input b . mov (specified by the identifier "1:6"), and copy them
to the output file out . mov:

ffmpeg —-i a.mov —-i b.mov -c copy —map 0:2 -map 1:6 out.mov
To select all video and the third audio stream from an input file:
ffmpeg —-i INPUT -map O:v -map O:a:2 OUTPUT

To map all the streams except the second audio, use negative mappings
ffmpeg —-i INPUT -map 0 —-map -0:a:1 OUTPUT

To map the video and audio streams from the first input, and using the trailing ?, ignore the audio
mapping if no audio streams exist in the first input:

ffmpeg —-i INPUT -map O:v -map 0O0:a? OUTPUT

To pick the English audio stream:

ffmpeg —-i INPUT -map O:m:language:eng OUTPUT

Note that using this option disables the default mappings for this output file.
—ignore_unknown

Ignore input streams with unknown type instead of failing if copying such streams is attempted.
—copy_unknown

Allow input streams with unknown type to be copied instead of failing if copying such streams is
attempted.

-map_channel
[input_file_id.stream_specifier.channel_id|—l][?][:output_file_id.stream_specifier]

Map an audio channel from a given input to an output. If output_file_id.stream_specifier is not set,
the audio channel will be mapped on all the audio streams.

Using "-1" instead of input_file_id.stream_specifier.channel_id will map a muted channel.

A trailing ? will allow the map_channel to be optional: if the map_channel matches no channel the
map_channel will be ignored instead of failing.

For example, assuming INPUT is a stereo audio file, you can switch the two audio channels with the
following command:

ffmpeg —-i INPUT -map_channel 0.0.1 -map_channel 0.0.0 OUTPUT

If you want to mute the first channel and keep the second:

ffmpeg —-i INPUT -map_channel -1 -map_channel 0.0.1 OUTPUT

The order of the "-map_channel" option specifies the order of the channels in the output stream. The
output channel layout is guessed from the number of channels mapped (mono if one "-map_channel",
stereo if two, etc.). Using "-ac" in combination of "-map_channel" makes the channel gain levels to
be updated if input and output channel layouts don’t match (for instance two "-map_channel" options
and "-ac 6").

You can also extract each channel of an input to specific outputs; the following command extracts
two channels of the INPUT audio stream (file 0, stream 0) to the respective OUTPUT_CHO and
OUTPUT_CHI outputs:

ffmpeg —-i INPUT -map_channel 0.0.0 OUTPUT_CHO -map_channel 0.0.1 OUTPUT_CH1

The following example splits the channels of a stereo input into two separate streams, which are put
into the same output file:

ffmpeg —-i stereo.wav -map 0:0 —-map 0:0 -map_channel 0.0.0:0.0 -map_channel 0.0.1:0.1 -y out.ogg

Note that currently each output stream can only contain channels from a single input stream; you
can’t for example use "-map_channel" to pick multiple input audio channels contained in different
streams (from the same or different files) and merge them into a single output stream. It is therefore
not currently possible, for example, to turn two separate mono streams into a single stereo stream.
However splitting a stereo stream into two single channel mono streams is possible.

If you need this feature, a possible workaround is to use the amerge filter. For example, if you need
to merge a media (here input . mkv) with 2 mono audio streams into one single stereo channel
audio stream (and keep the video stream), you can use the following command:

ffmpeg —-i input.mkv -filter_complex "[0:1] [0:2] amerge" -c:a pcm_sléle -c:v copy output.mkv

To map the first two audio channels from the first input, and using the trailing ?, ignore the audio
channel mapping if the first input is mono instead of stereo:

ffmpeg —-i INPUT -map_channel 0.0.0 -map_channel 0.0.1? OUTPUT

-map_metadatal:metadata_spec_out] infilel:metadata_spec_in]
(output, per—-metadata)

Set metadata information of the next output file from infile. Note that those are file indices
(zero-based), not filenames. Optional metadata_spec_in/out parameters specify, which metadata to
copy. A metadata specifier can have the following forms:

g

global metadata, i.e. metadata that applies to the whole file

s[:stream_spec]

per-stream metadata. stream_spec is a stream specifier as described in the[Stream specifiers|
chapter. In an input metadata specifier, the first matching stream is copied from. In an output
metadata specifier, all matching streams are copied to.

c:chapter_index

per-chapter metadata. chapter_index is the zero-based chapter index.
p:program_index

per-program metadata. program_index is the zero-based program index.
If metadata specifier is omitted, it defaults to global.

By default, global metadata is copied from the first input file, per-stream and per-chapter metadata is
copied along with streams/chapters. These default mappings are disabled by creating any mapping of
the relevant type. A negative file index can be used to create a dummy mapping that just disables
automatic copying.

For example to copy metadata from the first stream of the input file to global metadata of the output
file:

ffmpeg -1 in.ogg -map_metadata 0:s:0 out.mp3

To do the reverse, i.e. copy global metadata to all audio streams:

ffmpeg -i in.mkv -map_metadata:s:a 0:g out.mkv

Note that simple 0 would work as well in this example, since global metadata is assumed by default.
-map_chapters input_file_index (output)

Copy chapters from input file with index input_file_index to the next output file. If no chapter
mapping is specified, then chapters are copied from the first input file with at least one chapter. Use a
negative file index to disable any chapter copying.

—-benchmark (global)

Show benchmarking information at the end of an encode. Shows CPU time used and maximum
memory consumption. Maximum memory consumption is not supported on all systems, it will usually
display as O if not supported.

—benchmark_all (global)

Show benchmarking information during the encode. Shows CPU time used in various steps
(audio/video encode/decode).

—timelimit duration (global)
Exit after ffmpeg has been running for duration seconds.
—dump (global)
Dump each input packet to stderr.
—hex (global)
When dumping packets, also dump the payload.
-re (input)

Read input at native frame rate. Mainly used to simulate a grab device, or live input stream (e.g.
when reading from a file). Should not be used with actual grab devices or live input streams (where it
can cause packet loss). By default £ fmpeqg attempts to read the input(s) as fast as possible. This
option will slow down the reading of the input(s) to the native frame rate of the input(s). It is useful
for real-time output (e.g. live streaming).

—-loop_input

Loop over the input stream. Currently it works only for image streams. This option is used for
automatic FFserver testing. This option is deprecated, use -loop 1.

—loop_output number_of_times

Repeatedly loop output for formats that support looping such as animated GIF (0 will loop the output
infinitely). This option is deprecated, use -loop.

-vsync parameter

Video sync method. For compatibility reasons old values can be specified as numbers. Newly added
values will have to be specified as strings always.

0, passthrough

Each frame is passed with its timestamp from the demuxer to the muxer.

1, cfr
Frames will be duplicated and dropped to achieve exactly the requested constant frame rate.
2, vfr

Frames are passed through with their timestamp or dropped so as to prevent 2 frames from
having the same timestamp.

drop

As passthrough but destroys all timestamps, making the muxer generate fresh timestamps based
on frame-rate.

-1, auto
Chooses between 1 and 2 depending on muxer capabilities. This is the default method.

Note that the timestamps may be further modified by the muxer, after this. For example, in the case
that the format option avoid_negative_ts is enabled.

With -map you can select from which stream the timestamps should be taken. You can leave either
video or audio unchanged and sync the remaining stream(s) to the unchanged one.

—frame_drop_threshold parameter

Frame drop threshold, which specifies how much behind video frames can be before they are
dropped. In frame rate units, so 1.0 is one frame. The default is -1.1. One possible usecase is to avoid
framedrops in case of noisy timestamps or to increase frame drop precision in case of exact
timestamps.

—async samples_per_second

Audio sync method. "Stretches/squeezes" the audio stream to match the timestamps, the parameter is
the maximum samples per second by which the audio is changed. -async 1 is a special case where
only the start of the audio stream is corrected without any later correction.

Note that the timestamps may be further modified by the muxer, after this. For example, in the case
that the format option avoid_negative_ts is enabled.

This option has been deprecated. Use the aresample audio filter instead.
—copyts

Do not process input timestamps, but keep their values without trying to sanitize them. In particular,
do not remove the initial start time offset value.

Note that, depending on the vsync option or on specific muxer processing (e.g. in case the format
option avoid_negative_ts is enabled) the output timestamps may mismatch with the input
timestamps even when this option is selected.

—-start_at_zero
When used with copyts, shift input timestamps so they start at zero.

This means that using e.g. —ss 50 will make output timestamps start at 50 seconds, regardless of
what timestamp the input file started at.

—copytb mode

Specify how to set the encoder timebase when stream copying. mode is an integer numeric value, and
can assume one of the following values:

1
Use the demuxer timebase.

The time base is copied to the output encoder from the corresponding input demuxer. This is
sometimes required to avoid non monotonically increasing timestamps when copying video
streams with variable frame rate.

Use the decoder timebase.

The time base is copied to the output encoder from the corresponding input decoder.

Try to make the choice automatically, in order to generate a sane output.
Default value is -1.
—enc_time_base[:stream specifier] timebase (output,per-stream)

Set the encoder timebase. timebase is a floating point number, and can assume one of the following
values:

0
Assign a default value according to the media type.

For video - use 1/framerate, for audio - use 1/samplerate.

Use the input stream timebase when possible.

If an input stream is not available, the default timebase will be used.
>0

Use the provided number as the timebase.

This field can be provided as a ratio of two integers (e.g. 1:24, 1:48000) or as a floating point
number (e.g. 0.04166, 2.0833e-5)

Default value is 0.
—-shortest (output)
Finish encoding when the shortest input stream ends.
—dts_delta_threshold
Timestamp discontinuity delta threshold.
-muxdelay seconds (input)
Set the maximum demux-decode delay.
-muxpreload seconds (input)
Set the initial demux-decode delay.
—-streamid output-stream—-index:new-value (output)

Assign a new stream-id value to an output stream. This option should be specified prior to the output
filename to which it applies. For the situation where multiple output files exist, a streamid may be
reassigned to a different value.

For example, to set the stream O PID to 33 and the stream 1 PID to 36 for an output mpegts file:
ffmpeg —-i inurl -streamid 0:33 -streamid 1:36 out.ts
-bsf[:stream_specifier] bitstream filters (output,per-stream)

Set bitstream filters for matching streams. bitstream_filters is a comma-separated list of bitstream
filters. Use the —bs f£s option to get the list of bitstream filters.

ffmpeg —-i h264.mp4 -c:v copy -bsf:v h264_mpdtoannexb -an out.h264
ffmpeg -1 file.mov —-an -vn -bsf:s mov2textsub -c:s copy —-f rawvideo sub.txt

-tag[:stream_specifier] codec_tag (input/output,per—-stream)

Force a tag/fourcc for matching streams.
—timecode hh:mm:ssSEPff

Specify Timecode for writing. SEP is *:” for non drop timecode and ’;” (or ’.”) for drop.
ffmpeg -i input.mpg -timecode 01:02:03.04 -r 30000/1001 -s ntsc output.mpg

—filter_complex filtergraph (global)

Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or outputs. For simple
graphs — those with one input and one output of the same type — see the —filter options.
filtergraph is a description of the filtergraph, as described in the “Filtergraph syntax™ section of the
ffmpeg-filters manual.

Input link labels must refer to input streams using the [file_index:stream_specifier]
syntax (i.e. the same as —map uses). If stream_specifier matches multiple streams, the first one will
be used. An unlabeled input will be connected to the first unused input stream of the matching type.

Output link labels are referred to with —map. Unlabeled outputs are added to the first output file.
Note that with this option it is possible to use only lavfi sources without normal input files.

For example, to overlay an image over video

ffmpeg -i video.mkv -i image.png —-filter_complex ’[0:v][l:v]overlay[out]’ -map
" [out]’ out.mkv

Here [0:v] refers to the first video stream in the first input file, which is linked to the first (main)
input of the overlay filter. Similarly the first video stream in the second input is linked to the second
(overlay) input of overlay.

Assuming there is only one video stream in each input file, we can omit input labels, so the above is
equivalent to

ffmpeg -i video.mkv -i image.png —-filter_complex ’'overlay[out]’ -map
" [out]’ out.mkv

Furthermore we can omit the output label and the single output from the filter graph will be added to
the output file automatically, so we can simply write

ffmpeg -1 video.mkv —-i image.png —-filter_complex ’'overlay’ out.mkv
To generate 5 seconds of pure red video using lavfi color source:
ffmpeg —-filter_complex ’color=c=red’ -t 5 out.mkv

—filter_complex_threads nb_threads (global)

Defines how many threads are used to process a filter_complex graph. Similar to filter_threads but
used for —-filter_complex graphs only. The default is the number of available CPUs.

—-lavfi filtergraph (global)

Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or outputs. Equivalent to
—filter_complex.

—filter complex_script filename (global)

This option is similar to —filter_complex, the only difference is that its argument is the name of
the file from which a complex filtergraph description is to be read.

—accurate_seek (input)

This option enables or disables accurate seeking in input files with the —ss option. It is enabled by
default, so seeking is accurate when transcoding. Use —noaccurate_seek to disable it, which
may be useful e.g. when copying some streams and transcoding the others.

—-seek_timestamp (input)

This option enables or disables seeking by timestamp in input files with the —ss option. It is disabled
by default. If enabled, the argument to the —ss option is considered an actual timestamp, and is not
offset by the start time of the file. This matters only for files which do not start from timestamp O,
such as transport streams.

—thread_queue_size size (input)

This option sets the maximum number of queued packets when reading from the file or device. With
low latency / high rate live streams, packets may be discarded if they are not read in a timely manner;
raising this value can avoid it.

—-override_ffserver (global)

Overrides the input specifications from ffserver. Using this option you can map any input stream
to ffserver and control many aspects of the encoding from f fmpeg. Without this option
ffmpeg will transmit to £ fserver what is requested by ffserver.

The option is intended for cases where features are needed that cannot be specified to ffserver but
can be to f fmpeg.

-sdp_file file (global)

Print sdp information for an output stream to file. This allows dumping sdp information when at least
one output isn’t an rtp stream. (Requires at least one of the output formats to be rtp).

—discard (input)

Allows discarding specific streams or frames of streams at the demuxer. Not all demuxers support
this.

none
Discard no frame.
default
Default, which discards no frames.
noref
Discard all non-reference frames.
bidir
Discard all bidirectional frames.
nokey
Discard all frames excepts keyframes.
all
Discard all frames.
—abort_on flags (global)
Stop and abort on various conditions. The following flags are available:
empty_output
No packets were passed to the muxer, the output is empty.
—-xerror (global)
Stop and exit on error
-max_muxing_qgueue_size packets (output,per-stream)

When transcoding audio and/or video streams, ffmpeg will not begin writing into the output until it
has one packet for each such stream. While waiting for that to happen, packets for other streams are
buffered. This option sets the size of this buffer, in packets, for the matching output stream.

The default value of this option should be high enough for most uses, so only touch this option if you
are sure that you need it.

As a special exception, you can use a bitmap subtitle stream as input: it will be converted into a video with
the same size as the largest video in the file, or 720x576 if no video is present. Note that this is an
experimental and temporary solution. It will be removed once libavfilter has proper support for subtitles.

For example, to hardcode subtitles on top of a DVB-T recording stored in MPEG-TS format, delaying the
subtitles by 1 second:

ffmpeg —-i input.ts -filter_complex \
" [#0x2ef] setpts=PTS+1/TB [sub] ; [#0x2d0] [sub] overlay’ \
—-sn -map ’#0x2dc’ output.mkv

(0x2d0, 0x2dc and Ox2ef are the MPEG-TS PIDs of respectively the video, audio and subtitles streams;
0:0, 0:3 and 0:7 would have worked too)

5.12 Preset files[TOC]

A preset file contains a sequence of option=value pairs, one for each line, specifying a sequence of options
which would be awkward to specify on the command line. Lines starting with the hash ("#’) character are
ignored and are used to provide comments. Check the preset s directory in the FFmpeg source tree for
examples.

There are two types of preset files: ffpreset and avpreset files.

5.12.1 ffpreset files#]

ffpreset files are specified with the vpre, apre, spre, and fpre options. The fpre option takes the
filename of the preset instead of a preset name as input and can be used for any kind of codec. For the
vpre, apre, and spre options, the options specified in a preset file are applied to the currently selected
codec of the same type as the preset option.

The argument passed to the vpre, apre, and spre preset options identifies the preset file to use
according to the following rules:

First ffmpeg searches for a file named arg.ffpreset in the directories SFFMPEG_DATADIR (if set), and
SHOME/ . £ fmpegq, and in the datadir defined at configuration time (usually PREFIX/share/ffmpeq)
orin a ffpresets folder along the executable on win32, in that order. For example, if the argument is
libvpx—-1080p, it will search for the file 1ibvpx—-1080p.ffpreset.

If no such file is found, then ffmpeg will search for a file named codec_name-arg ffpreset in the
above-mentioned directories, where codec_name is the name of the codec to which the preset file options
will be applied. For example, if you select the video codec with —vcodec libvpx and use -vpre
1080p, then it will search for the file 1ibvpx—-1080p.ffpreset.

5.12.2 avpreset filesH]

avpreset files are specified with the pre option. They work similar to ffpreset files, but they only allow
encoder- specific options. Therefore, an option=value pair specifying an encoder cannot be used.

When the pre option is specified, ffmpeg will look for files with the suffix .avpreset in the directories
SAVCONV_DATADIR (if set), and SHOME/ . avconv, and in the datadir defined at configuration time
(usually PREFIX/share/ ffmpeq), in that order.

First ffmpeg searches for a file named codec_name-arg.avpreset in the above-mentioned directories,
where codec_name is the name of the codec to which the preset file options will be applied. For example,
if you select the video codec with —vcodec libvpx and use -pre 1080p, then it will search for the
file 1ibvpx—-1080p.avpreset.

If no such file is found, then ffmpeg will search for a file named arg.avpreset in the same directories.

6 Examples#|[TOC
6.1 Video and Audio grabbing

If you specify the input format and device then ffmpeg can grab video and audio directly.

ffmpeg —-f oss -i /dev/dsp -f video4linux2 -i /dev/videoO /tmp/out.mpg
Or with an ALSA audio source (mono input, card id 1) instead of OSS:
ffmpeg -f alsa -ac 1 —-i hw:1l —-f videod4linux2 -i /dev/videoO /tmp/out.mpg

Note that you must activate the right video source and channel before launching ffmpeg with any TV
viewer such as [xawtv]by Gerd Knorr. You also have to set the audio recording levels correctly with a
standard mixer.

6.2 X11 grabbing#[TOC|

Grab the X11 display with ffmpeg via

ffmpeg —-f xllgrab -video_size cif —-framerate 25 -i :0.0 /tmp/out.mpg

0.0 is display.screen number of your X11 server, same as the DISPLAY environment variable.

ffmpeg -f xllgrab -video_size cif —-framerate 25 -i :0.0+410,20 /tmp/out.mpg

0.0 is display.screen number of your X11 server, same as the DISPLAY environment variable. 10 is the
x-offset and 20 the y-offset for the grabbing.

6.3 Video and Audio file format conversion#

Any supported file format and protocol can serve as input to ffmpeg:

Examples:

http://linux.bytesex.org/xawtv/

You can use YUV files as input:
ffmpeg -i /tmp/test%d.Y /tmp/out.mpg
It will use the files:

/tmp/test0.Y, /tmp/test0.U, /tmp/test0.V,
/tmp/testl.Y, /tmp/testl.U, /tmp/testl.V, etc...

The Y files use twice the resolution of the U and V files. They are raw files, without header. They can
be generated by all decent video decoders. You must specify the size of the image with the —s option
if ffmpeg cannot guess it.

You can input from a raw YUV420P file:
ffmpeg —-i /tmp/test.yuv /tmp/out.avi

test.yuv is a file containing raw YUYV planar data. Each frame is composed of the Y plane followed
by the U and V planes at half vertical and horizontal resolution.

You can output to a raw YUV420P file:

ffmpeg —-i mydivx.avi hugefile.yuv

You can set several input files and output files:

ffmpeg -i /tmp/a.wav -s 640x480 —-i /tmp/a.yuv /tmp/a.mpg

Converts the audio file a.wav and the raw YUV video file a.yuv to MPEG file a.mpg.
You can also do audio and video conversions at the same time:

ffmpeg -1 /tmp/a.wav —-ar 22050 /tmp/a.mp2

Converts a.wav to MPEG audio at 22050 Hz sample rate.

You can encode to several formats at the same time and define a mapping from input stream to output
streams:

ffmpeg -i /tmp/a.wav —-map O:a -b:a 64k /tmp/a.mp2 —-map O:a -b:a 128k /tmp/b.mp2

Converts a.wav to a.mp2 at 64 kbits and to b.mp2 at 128 kbits. *-map file:index’ specifies which
input stream is used for each output stream, in the order of the definition of output streams.

You can transcode decrypted VOBs:

ffmpeg —-i snatch_l.vob -f avi -c:v mpeg4 -b:v 800k -g 300 -bf 2 -c:a libmp3lame -b:a 128k snatch.avi

This is a typical DVD ripping example; the input is a VOB file, the output an AVI file with MPEG-4
video and MP3 audio. Note that in this command we use B-frames so the MPEG-4 stream is DivX5
compatible, and GOP size is 300 which means one intra frame every 10 seconds for 29.97fps input
video. Furthermore, the audio stream is MP3-encoded so you need to enable LAME support by

passing ——enable-1libmp3lame to configure. The mapping is particularly useful for DVD
transcoding to get the desired audio language.

NOTE: To see the supported input formats, use £ fmpeg —-demuxers.
You can extract images from a video, or create a video from many images:
For extracting images from a video:

ffmpeg -i foo.avi -r 1 -s WxH -f image2 foo-%03d.jpeg

This will extract one video frame per second from the video and will output them in files named
foo-001. jpeg, foo-002. jpeg, etc. Images will be rescaled to fit the new WxH values.

If you want to extract just a limited number of frames, you can use the above command in
combination with the —frames : v or —t option, or in combination with -ss to start extracting from a
certain point in time.

For creating a video from many images:

ffmpeg —-f image2 —-framerate 12 -i foo-%03d.jpeg -s WxH foo.avi

The syntax foo-%03d. jpeg specifies to use a decimal number composed of three digits padded
with zeroes to express the sequence number. It is the same syntax supported by the C printf function,
but only formats accepting a normal integer are suitable.

When importing an image sequence, -i also supports expanding shell-like wildcard patterns
(globbing) internally, by selecting the image2-specific -pattern_type glob option.

For example, for creating a video from filenames matching the glob pattern foo-* . jpeg:

ffmpeg —-f image2 -pattern_type glob —-framerate 12 -i ’foo-*.Jjpeg’ -s WxH foo.avi
You can put many streams of the same type in the output:

ffmpeg —-i testl.avi —-i test2.avi —map 1:1 -map 1:0 —map 0:1 -map 0:0 —-c copy -y testl2.nut

The resulting output file test12.nut will contain the first four streams from the input files in
reverse order.

To force CBR video output:
ffmpeg —-i myfile.avi -b 4000k -minrate 4000k -maxrate 4000k -bufsize 1835k out.m2v

The four options Imin, Imax, mblmin and mblmax use ’lambda’ units, but you may use the
QP2LAMBDA constant to easily convert from ’q’ units:

ffmpeg -i src.ext —-lmax 21*QP2LAMBDA dst.ext

7 Syntax#TOC

This section documents the syntax and formats employed by the FFmpeg libraries and tools.

7.1 Quoting and escapinglf]

FFmpeg adopts the following quoting and escaping mechanism, unless explicitly specified. The following
rules are applied:

® ‘’’and ‘\’ are special characters (respectively used for quoting and escaping). In addition to them,
there might be other special characters depending on the specific syntax where the escaping and
quoting are employed.

® A special character is escaped by prefixing it with a ‘\’.

® All characters enclosed between ‘/ /’ are included literally in the parsed string. The quote character
7’ itself cannot be quoted, so you may need to close the quote and escape it.

® [eading and trailing whitespaces, unless escaped or quoted, are removed from the parsed string.

Note that you may need to add a second level of escaping when using the command line or a script, which
depends on the syntax of the adopted shell language.

The function av_get_token defined in 1ibavutil/avstring.h can be used to parse a token
quoted or escaped according to the rules defined above.

The tool tools/ffescape in the FFmpeg source tree can be used to automatically quote or escape a
string in a script.

7.1.1 Example§|TO(]

® Escape the string Crime d’Amour containing the ’ special character:
Crime d\’Amour
® The string above contains a quote, so the ’ needs to be escaped when quoting it:
Crime d’\’’Amour’
® Include leading or trailing whitespaces using quoting:
’ this string starts and ends with whitespaces '
® Escaping and quoting can be mixed together:
’ The string ’"\’string\’’ is a string '’
® To include a literal ‘\’ you can use either escaping or quoting:

"c:\foo’ can be written as c:\\foo

7.2 DatefiTOQ

The accepted syntax is:

[(YYYY-MM-DD|YYYYMMDD) [T|t]| 1] ((HH:MM:SS[.m...111) | (HHMMSS[.m...]111)) [Z]
now

If the value is "now" it takes the current time.

Time is local time unless Z is appended, in which case it is interpreted as UTC. If the year-month-day part
is not specified it takes the current year-month-day.

7.3 Time durationf]

There are two accepted syntaxes for expressing time duration.

[-1[HH:1MM:SS[.m...]

HH expresses the number of hours, MM the number of minutes for a maximum of 2 digits, and SS the
number of seconds for a maximum of 2 digits. The m at the end expresses decimal value for SS.

or

[-1S+[.m...]
S expresses the number of seconds, with the optional decimal part m.

In both expressions, the optional ‘-’ indicates negative duration.

7.3.1 Example§f|TOC]

The following examples are all valid time duration:
‘55

55 seconds
‘12:03:45°

12 hours, 03 minutes and 45 seconds
‘23.189°

23.189 seconds

7.4 Video siz€f[TOC]

Specify the size of the sourced video, it may be a string of the form widthxheight, or the name of a size
abbreviation.

The following abbreviations are recognized:
‘ntsc’

720x480

13 B

pal
720x576
‘gntsc’
352x240
‘gpal’
352x288
‘sntsc’
640x480
‘spal’
768x576
‘film’
352x240
‘ntsc—film’
352x240
‘sqgcif’
128x96
‘gcif’
176x144

13

cif’

352x288
‘4eif’
704x576
‘l1é6cif’
1408x1152
‘agqvga’
160x120
‘quga’
320x240
‘vga’
640x480
‘svga’
800x600
‘xga’
1024x768
‘uxga’
1600x1200
‘qxga’
2048x1536
‘sxga’
1280x1024
‘gsxga’

2560x2048

‘hsxga’

5120x4096
“wvga’
852x480
‘wxga’
1366x768
‘wsxga’
1600x1024
‘wuxga’
1920x1200
‘woxga’
2560x1600
‘wgsxga’
3200x2048
‘wquxga’
3840x2400
‘whsxga’
6400x4096
‘whuxga’
7680x4800
‘cga’
320x200
‘ega’
640x350

‘hd480’

852x480
‘hd720’
1280x720
‘hd1080’
1920x1080
o3
2048x1080
‘2kflat’
1998x1080
‘2kscope’
2048x858
4y
4096x2160
‘4kflat’
3996x2160
‘4kscope’
4096x1716
‘nhd’
640x360
‘hqvga’
240x160
‘wavga’
400x240

‘fwgvga’

432x240
‘hvga’

480x320
‘qhd’

960x540
‘2kdci’

2048x1080
‘4kdci’

4096x2160
‘uhd2160’

3840x2160
‘uhd4320’

7680x4320

7.5 Video ratefiTOC

Specify the frame rate of a video, expressed as the number of frames generated per second. It has to be a
string in the format frame_rate_num/frame_rate_den, an integer number, a float number or a valid video
frame rate abbreviation.

The following abbreviations are recognized:
‘ntsc’

30000/1001

13 B

pal
25/1

‘gntsc’

30000/1001

qual’

25/1
‘sntsc’

30000/1001
‘spal’

25/1
‘film’

24/1
‘ntsc-film’

24000/1001

7.6 RatidgfTO(C

A ratio can be expressed as an expression, or in the form numerator:denominator.

Note that a ratio with infinite (1/0) or negative value is considered valid, so you should check on the
returned value if you want to exclude those values.

The undefined value can be expressed using the "0:0" string.

7.7 Color]

It can be the name of a color as defined below (case insensitive match) or a [0x | #] RRGGBB [AA]
sequence, possibly followed by @ and a string representing the alpha component.

The alpha component may be a string composed by "0x" followed by an hexadecimal number or a decimal
number between 0.0 and 1.0, which represents the opacity value (‘0x00’ or ‘0.0’ means completely
transparent, ‘Oxff’ or ‘1.0’ completely opaque). If the alpha component is not specified then ‘0xf £’ is
assumed.

The string ‘random’ will result in a random color.
The following names of colors are recognized:
‘AliceBlue’

O0xFOFSFF

‘AntiqueWhite’

0xFAEBD7
‘Aqua’
0xO0OFFFF
‘Aquamarine’
0x7FFFD4
‘Azure’
0xFOFFFF
‘Beige’
O0xFSF5DC
‘Bisque’
OxFFE4C4
‘Black’
0x000000
‘BlanchedAlmond’
O0xFFEBCD
‘Blue’
0x0000FF
‘BlueViolet’
0x8A2BE2
‘Brown’
0xAS2A2A
‘BurlyWood’
0xDEB887

‘CadetBlue’

0x5F9EAQ
‘Chartreuse’
0x7FFF00
‘Chocolate’
0xD2691E
‘Coral’
0xFF7F50
‘CornflowerBlue’
0x6495ED
‘Cornsilk’
0xFFF8DC
‘Crimson’
0xDC143C
‘Cyan’
0xO0FFFF
‘DarkBlue’
0x00008B
‘DarkCyan’
0x008B8B
‘DarkGoldenRod’
0xB8860B
‘DarkGray’
0xA9A9A9

‘DarkGreen’

0x006400
‘DarkKhaki’
0xBDB76B
‘DarkMagenta’
0x8B008B
‘DarkOliveGreen’
0x556B2F
‘Darkorange’
0xFF8CO00
‘DarkOrchid’
0x9932CC
‘DarkRed’
0x8B0000
‘DarkSalmon’
0xE9967A
‘DarkSeaGreen’
0x8FBCS8F
‘DarkSlateBlue’
0x483DSB
‘DarkSlateGray’
0x2F4F4F
‘DarkTurquoise’
0x00CED1

‘DarkViolet’

0x9400D3
‘DeepPink’
0xFF1493
‘DeepSkyBlue’
0x00BFFF
‘DimGray’
0x696969
‘DodgerBlue’
0x1E9OFF
‘FireBrick’
0xB22222
‘FloralWhite’
0xFFFAFO
‘ForestGreen’
0x228B22
‘Fuchsia’
0xFFOOFF
‘Gainsboro’
0xDCDCDC
‘GhostWhite’
OxF8F8FF
‘Gold’

OxFFD700

‘GoldenRod’

0xDAAS520
‘Gray’
0x808080
‘Green’
0x008000
‘GreenYellow’
0xADFF2F
‘HoneyDew’
0xFOFFFO
‘HotPink’
0xFF69B4
‘IndianRed’
0xCD5C5C
‘Indigo’
0x4B0082
‘Ivory’
OxFFFFFO
‘Khaki’
0xFOE68C
‘Lavender’
OxE6E6FA
‘LavenderBlush’
OxFFFOF5

‘LawnGreen’

0x7CFC00
‘LemonChiffon’
0xFFFACD
‘LightBlue’
0xADDBSE6
‘LightCoral’
0xF08080
‘LightCyan’
0xEOFFFF
‘LightGoldenRodYellow’
0xFAFAD?2
‘LightGreen’
0x90EE90
‘LightGrey’
0xD3D3D3
‘LightPink’
0xFFB6C1
‘LightSalmon’
O0xFFAO7A
‘LightSeaGreen’
0x20B2AA
‘LightSkyBlue’
0x87CEFA

‘LightSlateGray’

0x778899
‘LightSteelBlue’
0xBOC4DE
‘LightYellow’
OxFFFFEO
‘Lime’
0x00FF00
‘LimeGreen’
0x32CD32
‘Linen’
0xFAFOE6
‘Magenta’
OxFFOOFF
‘Maroon’
0x800000
‘MediumAgquaMarine’
0x66CDAA
‘MediumBlue’
0x0000CD
‘MediumOrchid’
0xBAS55D3
‘MediumPurple’
0x9370D8

‘MediumSeaGreen’

0x3CB371
‘MediumSlateBlue’
0x7B68EE
‘MediumSpringGreen’
0x00FA9A
‘MediumTurquoise’
0x48D1CC
‘MediumVioletRed’
0xC71585
‘MidnightBlue’
0x191970
‘MintCream’
0xF5FFFA
‘MistyRose’
OxFFE4E1
‘Moccasin’
OxFFE4B5
‘NavajoWhite’
0xFFDEAD
‘Navy’
0x000080
‘OldLace’
0xFDF5E6

‘Olive’

0x808000
‘OliveDrab’
0x6B8E23
‘Orange’
0xFFA500
‘OrangeRed’
0xFF4500
‘Orchid’
0xDA70D6
‘PaleGoldenRod’
OxEEESAA
‘PaleGreen’
0x98FB98
‘PaleTurquoise’
OxAFEEEE
‘PaleVioletRed’
0xD87093
‘PapayaWhip’
0xFFEFD5
‘PeachPuff’
0xFFDAB9
‘Peru’
0xCD853F

‘Pink’

0xFFCOCB
‘Plum’
0xDDAODD
‘PowderBlue’
0xBOEOE6
‘Purple’
0x800080
‘Red’
0xFF0000
‘RosyBrown’
0xBC8F8F
‘RoyalBlue’
0x4169E1
‘SaddleBrown’
0x8B4513
‘Salmon’
0xFA8072
‘SandyBrown’
0xF4A460
‘SeaGreen’
0x2E8B57
‘SeaShell’
OxFFF5EE

‘Sienna’

0xA0522D
‘Silver’
0xCOCO0CO
‘SkyBlue’
0x87CEEB
‘SlateBlue’
0x6A5ACD
‘SlateGray’
0x708090
‘Snow’
OxFFFAFA
‘SpringGreen’
0x00FF7F
‘SteelBlue’
0x4682B4
‘Tan’
0xD2B48C
‘Teal’
0x008080
‘Thistle’
0xD8BFDS
‘Tomato’

0xFF6347

‘Turquoise’

0x40EODO
‘Violet’
0xEE82EE
‘Wheat’
0xF5SDEB3
‘White’
0xFFFFFF
‘WhiteSmoke’
O0xF5F5SF5
‘Yellow’
0xFFFF00
‘YellowGreen’

0x9ACD32

7.8 Channel Layout#

A channel layout specifies the spatial disposition of the channels in a multi-channel audio stream. To
specify a channel layout, FFmpeg makes use of a special syntax.

Individual channels are identified by an id, as given by the table below:
FL
front left
FR’
front right
e
front center
‘LFE’

low frequency

‘BL’

back left
‘BR’

back right
‘FLC’

front left-of-center
‘FRC’

front right-of-center
‘BC’

back center
g1

side left
‘SR’

side right
‘pe

top center
‘TFL’

top front left
‘TFC’

top front center
‘TFR’

top front right
‘TBL’

top back left

‘TBC’

top back center
‘TBR’

top back right
DL’

downmix left

downmix right

wide left
WR’

wide right
‘sSpL’

surround direct left
‘SDR’

surround direct right
‘LFE2’

low frequency 2
Standard channel layout compositions can be specified by using the following identifiers:
‘mono’

FC
‘stereo’

FL+FR
‘2.1

FL+FR+LFE

‘3.0

‘3.

‘4.

FL+FR+FC
0 (back)’
FL+FR+BC
0’

FL+FR+FC+BC

‘quad’

FL+FR+BL+BR

‘quad (side)’

FL+FR+SL+SR

.1

FL+FR+FC+LFE

.0’

FL+FR+FC+BL+BR

.0 (side)’

FL+FR+FC+SL+SR

.1

FL+FR+FC+LFE+BC

.1

FL+FR+FC+LFE+BL+BR

.1(side)’

FL+FR+FC+LFE+SL+SR

.0

FL+FR+FC+BC+SL+SR

.0 (front)’

FL+FR+FLC+FRC+SL+SR

‘hexagonal’

FL+FR+FC+BL+BR+BC

.1

FL+FR+FC+LFE+BC+SL+SR

.1

FL+FR+FC+LFE+BL+BR+BC

.1(front)’

FL+FR+LFE+FLC+FRC+SL+SR

.0

FL+FR+FC+BL+BR+SL+SR

.0 (front)”’

FL+FR+FC+FLC+FRC+SL+SR

1

FL+FR+FC+LFE+BL+BR+SL+SR

.1 (wide)’

FL+FR+FC+LFE+BL+BR+FLC+FRC

.1 (wide-side)’

FL+FR+FC+LFE+FLC+FRC+SL+SR

‘octagonal’

FL+FR+FC+BL+BR+BC+SL+SR

‘downmix’

A custom channel layout can be specified as a sequence of terms, separated by *+’ or’

DL+DR

’. Each term can be:

® the name of a standard channel layout (e.g. ‘mono’, ‘stereo’, ‘4.0’, ‘quad’, ‘5.0, etc.)

the name of a single channel (e.g. ‘FL’, ‘FR’, ‘FC’, ‘LFE’, etc.)

® a number of channels, in decimal, followed by ’c’, yielding the default channel layout for that number
of channels (see the function av_get_default_channel_layout). Note that not all channel
counts have a default layout.

® a number of channels, in decimal, followed by *C’, yielding an unknown channel layout with the
specified number of channels. Note that not all channel layout specification strings support unknown
channel layouts.

® a channel layout mask, in hexadecimal starting with "0x" (see the AV_CH_ * macros in
libavutil/channel_layout.h.

Before libavutil version 53 the trailing character "c" to specify a number of channels was optional, but
now it is required, while a channel layout mask can also be specified as a decimal number (if and only if
not followed by "c" or "C").

See also the function av_get_channel_layout defined in 1ibavutil/channel_layout.h.

8 Expression Evaluation#i TOC

When evaluating an arithmetic expression, FFmpeg uses an internal formula evaluator, implemented
through the 1ibavutil/eval.h interface.

An expression may contain unary, binary operators, constants, and functions.

Two expressions exprl and expr2 can be combined to form another expression "exprl;expr2". exprl and
expr2 are evaluated in turn, and the new expression evaluates to the value of expr2.

The following binary operators are available: +, —, *, /, *.
The following unary operators are available: +, —.
The following functions are available:
abs (x)
Compute absolute value of x.
acos (x)
Compute arccosine of x.
asin (x)
Compute arcsine of x.

atan (x)

Compute arctangent of x.
atan2 (x, vy)
Compute principal value of the arc tangent of y/x.
between (x, min, max)
Return 1 if x is greater than or equal to min and lesser than or equal to max, 0 otherwise.

bitand(x, Vv)
bitor (x, y)

Compute bitwise and/or operation on x and y.

The results of the evaluation of x and y are converted to integers before executing the bitwise
operation.

Note that both the conversion to integer and the conversion back to floating point can lose precision.
Beware of unexpected results for large numbers (usually 2453 and larger).

ceil (expr)
Round the value of expression expr upwards to the nearest integer. For example, "ceil(1.5)" is "2.0".
clip(x, min, max)
Return the value of x clipped between min and max.
cos (x)
Compute cosine of x.
cosh (x)
Compute hyperbolic cosine of x.
eq(x, y)
Return 1 if x and y are equivalent, 0 otherwise.
exp (x)
Compute exponential of x (with base e, the Euler’s number).
floor (expr)

Round the value of expression expr downwards to the nearest integer. For example, "floor(-1.5)" is
”_2.0"‘

gauss (x)
Compute Gauss function of x, corresponding to exp (-x*x/2) / sqrt (2*PI).
gcd(x, y)

Return the greatest common divisor of x and y. If both x and y are O or either or both are less than
zero then behavior is undefined.

gt (x, vy)

Return 1 if x is greater than y, O otherwise.
gte(x, vy)

Return 1 if x is greater than or equal to y, 0 otherwise.
hypot (x, y)

This function is similar to the C function with the same name; it returns "sqrt(x*x + y*y)", the length
of the hypotenuse of a right triangle with sides of length x and y, or the distance of the point (x, y)
from the origin.

if(x, y)
Evaluate x, and if the result is non-zero return the result of the evaluation of y, return 0 otherwise.
if(x, y, z)

Evaluate x, and if the result is non-zero return the evaluation result of y, otherwise the evaluation
result of z.

ifnot (x, y)
Evaluate x, and if the result is zero return the result of the evaluation of y, return 0 otherwise.
ifnot (x, vy, z)

Evaluate x, and if the result is zero return the evaluation result of y, otherwise the evaluation result of
Z.

isinf (x)
Return 1.0 if x is +/-INFINITY, 0.0 otherwise.
isnan (x)

Return 1.0 if x is NAN, 0.0 otherwise.

ld (var)

Load the value of the internal variable with number var, which was previously stored with st(var,
expr). The function returns the loaded value.

lerp(x, y, z)
Return linear interpolation between x and y by amount of z.
log(x)
Compute natural logarithm of x.
1t (%, y)
Return 1 if x is lesser than y, O otherwise.
lte(x, vy)
Return 1 if x is lesser than or equal to y, O otherwise.
max (x, y)
Return the maximum between x and y.
min(x, V)
Return the minimum between x and y.
mod (x, VY)
Compute the remainder of division of x by y.
not (expr)
Return 1.0 if expr is zero, 0.0 otherwise.
pow (x, V)
Compute the power of x elevated y, it is equivalent to "(x)(y)".

print (t)
print (t, 1)

Print the value of expression 7 with loglevel [. If [is not specified then a default log level is used.
Returns the value of the expression printed.

Prints t with loglevel 1

random (x)

Return a pseudo random value between 0.0 and 1.0. x is the index of the internal variable which will
be used to save the seed/state.

root (expr, max)

Find an input value for which the function represented by expr with argument /d(0) is O in the interval
0..max.

The expression in expr must denote a continuous function or the result is undefined.

1d(0) is used to represent the function input value, which means that the given expression will be
evaluated multiple times with various input values that the expression can access through 1d (0) .
When the expression evaluates to O then the corresponding input value will be returned.

round (expr)

Round the value of expression expr to the nearest integer. For example, "round(1.5)" is "2.0".
sin (x)

Compute sine of x.
sinh (x)

Compute hyperbolic sine of x.
sqgrt (expr)

Compute the square root of expr. This is equivalent to "(expr)*.5".
squish (x)

Compute expression 1/ (1 + exp (4*x)).
st (var, expr)

Store the value of the expression expr in an internal variable. var specifies the number of the variable
where to store the value, and it is a value ranging from O to 9. The function returns the value stored in
the internal variable. Note, Variables are currently not shared between expressions.

tan (x)
Compute tangent of x.

tanh (x)

Compute hyperbolic tangent of x.

taylor (expr, x)
taylor (expr, x, id)

Evaluate a Taylor series at x, given an expression representing the 1d (id) -th derivative of a
function at 0.

When the series does not converge the result is undefined.

ld(id) is used to represent the derivative order in expr, which means that the given expression will be
evaluated multiple times with various input values that the expression can access through 1d (id) . If
id is not specified then 0 is assumed.

Note, when you have the derivatives at y instead of 0, taylor (expr, x-y) can be used.
time (0)

Return the current (wallclock) time in seconds.
trunc (expr)

Round the value of expression expr towards zero to the nearest integer. For example, "trunc(-1.5)" is
ll_ 1 .Oll .

while (cond, expr)

Evaluate expression expr while the expression cond is non-zero, and returns the value of the last expr
evaluation, or NAN if cond was always false.

The following constants are available:
PT

area of the unit disc, approximately 3.14

exp(1) (Euler’s number), approximately 2.718
PHI
golden ratio (1+sqrt(5))/2, approximately 1.618
Assuming that an expression is considered "true" if it has a non-zero value, note that:

* works like AND

+ works like OR

For example the construct:

if (A AND B) then C

is equivalent to:
if (A*B, C)

In your C code, you can extend the list of unary and binary functions, and define recognized constants, so
that they are available for your expressions.

The evaluator also recognizes the International System unit prefixes. If ’i’ is appended after the prefix,
binary prefixes are used, which are based on powers of 1024 instead of powers of 1000. The B’ postfix
multiplies the value by 8, and can be appended after a unit prefix or used alone. This allows using for
example ’KB’, "MiB’, ’G’ and 'B’ as number postfix.

The list of available International System prefixes follows, with indication of the corresponding powers of
10 and of 2.

y

107-24 /1 27-80
z

107-21 /27-70
a

107-18 / 27-60
f

107-15/27-50
p

107-12/27-40
n

107-9 /1 27-30
u

107-6 / 27-20

107-3 /27-10

107-2

107-1

1072

1073 /2710

1073 /2710

1076 /2720

1079 /2730

10712 /2740

10715 /2740

10718 /2750

10721 /2760

10724 /2770

9 OpenCL Options#[TOC

When FFmpeg is configured with ——enable-opencl, it is possible to set the options for the global
OpenCL context.

The list of supported options follows:
build_options

Set build options used to compile the registered kernels.

See reference "OpenCL Specification Version: 1.2 chapter 5.6.4".
platform_idx

Select the index of the platform to run OpenCL code.

The specified index must be one of the indexes in the device list which can be obtained with £ fmpeg
—opencl_benchor av_opencl_get_device_list ().

device_idx
Select the index of the device used to run OpenCL code.

The specified index must be one of the indexes in the device list which can be obtained with £ fmpeg
—opencl_benchorav_opencl_get_device_list ().

10 Codec Options#i[TOC

libavcodec provides some generic global options, which can be set on all the encoders and decoders. In
addition each codec may support so-called private options, which are specific for a given codec.

Sometimes, a global option may only affect a specific kind of codec, and may be nonsensical or ignored
by another, so you need to be aware of the meaning of the specified options. Also some options are meant
only for decoding or encoding.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
the AVCodecContext options or using the Libavutil/opt .h API for programmatic use.

The list of supported options follow:
b integer (encoding,audio,video)

Set bitrate in bits/s. Default value is 200K.

ab integer (encoding,audio)
Set audio bitrate (in bits/s). Default value is 128K.

bt integer (encoding,video)

Set video bitrate tolerance (in bits/s). In 1-pass mode, bitrate tolerance specifies how far ratecontrol is
willing to deviate from the target average bitrate value. This is not related to min/max bitrate.
Lowering tolerance too much has an adverse effect on quality.

flags flags (decoding/encoding,audio,video,subtitles)
Set generic flags.

Possible values:

3 s

mv4

Use four motion vector by macroblock (mpeg4).
‘gpel’

Use 1/4 pel motion compensation.
‘loop’

Use loop filter.
‘gscale’

Use fixed gscale.

gmc

Use gmc.

3]

mv0

Always try a mb with mv=<0,0>.

‘input_preserved’
‘passl’

Use internal 2pass ratecontrol in first pass mode.

‘pass2’

Use internal 2pass ratecontrol in second pass mode.

‘gray’
Only decode/encode grayscale.
‘emu_edge’
Do not draw edges.
‘psnr’
Set error[?] variables during encoding.

‘truncated’

3 bl

naq
Normalize adaptive quantization.
‘ildet’
Use interlaced DCT.
‘low_delay’
Force low delay.
‘global_header’
Place global headers in extradata instead of every keyframe.
‘bitexact’

Only write platform-, build- and time-independent data. (except (I)DCT). This ensures that file
and data checksums are reproducible and match between platforms. Its primary use is for
regression testing.

‘aic’
Apply H263 advanced intra coding / mpeg4 ac prediction.
‘cbp’
Deprecated, use mpegvideo private options instead.
‘gprd’

Deprecated, use mpegvideo private options instead.

‘ilme’

Apply interlaced motion estimation.
‘cgop’
Use closed gop.
me_method integer (encoding,video)
Set motion estimation method.
Possible values:
‘zero’
zero motion estimation (fastest)
‘full’
full motion estimation (slowest)
‘epzs’
EPZS motion estimation (default)
‘esa’
esa motion estimation (alias for full)
‘tesa’
tesa motion estimation
‘dia’
dia motion estimation (alias for epzs)
‘log’
log motion estimation
‘phods’
phods motion estimation
‘w1’
X1 motion estimation

bl

‘hex

hex motion estimation

‘umh’
umh motion estimation
‘iter’
iter motion estimation

extradata_size integer

Set extradata size.
time_base rational number

Set codec time base.

It is the fundamental unit of time (in seconds) in terms of which frame timestamps are represented.
For fixed-fps content, timebase should be 1 / frame_rate and timestamp increments should be
identically 1.

g integer (encoding, video)
Set the group of picture (GOP) size. Default value is 12.
ar integer (decoding/encoding,audio)
Set audio sampling rate (in Hz).
ac integer (decoding/encoding,audio)
Set number of audio channels.
cutoff integer (encoding,audio)

Set cutoff bandwidth. (Supported only by selected encoders, see their respective documentation
sections.)

frame_size integer (encoding,audio)
Set audio frame size.

Each submitted frame except the last must contain exactly frame_size samples per channel. May be 0
when the codec has CODEC_CAP_VARIABLE_FRAME_SIZE set, in that case the frame size is not
restricted. It is set by some decoders to indicate constant frame size.

frame_number integer

Set the frame number.

delay integer
qcomp float (encoding,video)

Set video quantizer scale compression (VBR). It is used as a constant in the ratecontrol equation.
Recommended range for default rc_eq: 0.0-1.0.

gblur float (encoding,video)

Set video quantizer scale blur (VBR).
gmin integer (encoding,video)

Set min video quantizer scale (VBR). Must be included between -1 and 69, default value is 2.
gmax Iinteger (encoding,video)

Set max video quantizer scale (VBR). Must be included between -1 and 1024, default value is 31.
qgqdiff integer (encoding,video)

Set max difference between the quantizer scale (VBR).
bf integer (encoding,video)

Set max number of B frames between non-B-frames.

Must be an integer between -1 and 16. 0 means that B-frames are disabled. If a value of -1 is used, it
will choose an automatic value depending on the encoder.

Default value is 0.
b_gfactor float (encoding,video)
Set qp factor between P and B frames.
rc_strateqgy integer (encoding,video)
Set ratecontrol method.
b_strategy integer (encoding,video)
Set strategy to choose between I/P/B-frames.
ps integer (encoding,video)

Set RTP payload size in bytes.

mv_bits integer
header_bits integer
i_tex _bits integer
p_tex_bits integer
i_count integer
p_count integer
skip_count integer
misc_bits integer
frame_bits integer
codec_tag integer
bug flags (decoding,video)

Workaround not auto detected encoder bugs.
Possible values:

‘autodetect’
‘old_msmpeg4’

some old lavc generated msmpeg4v3 files (no autodetection)
‘xvid_ilace’

Xvid interlacing bug (autodetected if fourcc==XVIX)
‘ump4’

(autodetected if fourcc==UMP4)
‘no_padding’

padding bug (autodetected)

3 bl

amv
‘ac_vlc’

illegal vlc bug (autodetected per fourcc)

‘gpel_chroma’
‘std_gpel’

old standard gpel (autodetected per fourcc/version)

‘gpel_chroma?2’
‘direct_blocksize’

direct-qpel-blocksize bug (autodetected per fourcc/version)

‘edge’
edge padding bug (autodetected per fourcc/version)

‘hpel_chroma’
‘de_clip’
‘ms’

Workaround various bugs in microsoft broken decoders.
‘trunc’
trancated frames
lelim integer (encoding,video)

Set single coefficient elimination threshold for luminance (negative values also consider DC
coefficient).

celim integer (encoding,video)

Set single coefficient elimination threshold for chrominance (negative values also consider dc

coefficient)
strict integer (decoding/encoding,audio,video)
Specify how strictly to follow the standards.
Possible values:
‘very’
strictly conform to an older more strict version of the spec or reference software
‘strict’

strictly conform to all the things in the spec no matter what consequences

‘normal’
‘unofficial’

allow unofficial extensions

‘experimental’

allow non standardized experimental things, experimental (unfinished/work in progress/not well
tested) decoders and encoders. Note: experimental decoders can pose a security risk, do not use

this for decoding untrusted input.

b_goffset float (encoding,video)
Set QP offset between P and B frames.
err_detect flags (decoding,audio,video)
Set error detection flags.
Possible values:
‘crccheck’
verify embedded CRCs
‘bitstream’
detect bitstream specification deviations
‘buffer’
detect improper bitstream length
‘explode’
abort decoding on minor error detection
‘ignore_err’

ignore decoding errors, and continue decoding. This is useful if you want to analyze the content
of a video and thus want everything to be decoded no matter what. This option will not result in
a video that is pleasing to watch in case of errors.

‘careful’

consider things that violate the spec and have not been seen in the wild as errors
‘compliant’

consider all spec non compliancies as errors
‘aggressive’

consider things that a sane encoder should not do as an error

has_b_frames integer
block_align integer
mpeg_quant integer (encoding,video)

Use MPEG quantizers instead of H.263.
gsquish float (encoding,video)

How to keep quantizer between qmin and gmax (0 = clip, 1 = use differentiable function).
rc_gmod_amp float (encoding,video)

Set experimental quantizer modulation.
rc_gmod_freq integer (encoding,video)

Set experimental quantizer modulation.

rc_override_count integer
rc_eq string (encoding,video)

Set rate control equation. When computing the expression, besides the standard functions defined in
the section "Expression Evaluation’, the following functions are available: bits2qp(bits), qp2bits(gp).
Also the following constants are available: iTex pTex tex mv fCode iCount mcVar var isl isP isB
avgQP qComp avgllTex avgPITex avgPPTex avgBPTex avgTex.

maxrate integer (encoding,audio,video)
Set max bitrate tolerance (in bits/s). Requires bufsize to be set.
minrate integer (encoding,audio,video)

Set min bitrate tolerance (in bits/s). Most useful in setting up a CBR encode. It is of little use
elsewise.

bufsize integer (encoding,audio,video)
Set ratecontrol buffer size (in bits).
rc_buf_aggressivity float (encoding,video)
Currently useless.
i_gfactor float (encoding,video)
Set QP factor between P and I frames.
i_goffset float (encoding,video)
Set QP offset between P and I frames.

rc_init_cplx float (encoding,video)

Set initial complexity for 1-pass encoding.
dct integer (encoding,video)
Set DCT algorithm.
Possible values:
‘auto’
autoselect a good one (default)
‘fastint’

fast integer

3 ’

int
accurate integer

‘mmx’

‘altivec’

‘faan’

floating point AAN DCT
lumi_mask float (encoding,video)
Compress bright areas stronger than medium ones.
tcplx_mask float (encoding,video)
Set temporal complexity masking.
scplx_mask float (encoding,video)
Set spatial complexity masking.
p_mask float (encoding,video)
Set inter masking.
dark_mask float (encoding,video)
Compress dark areas stronger than medium ones.

idct integer (decoding/encoding,video)

Select IDCT implementation.
Possible values:

‘auto’
‘int
‘simple’
‘simplemmx’
‘simpleauto’

’

Automatically pick a IDCT compatible with the simple one

3 2

arm
‘altivec’

‘sh4’
‘simplearm’
‘simplearmv5te’
‘simplearmvé6’
‘simpleneon’
‘simplealpha’

[2

1pp
‘xvidmmx’
‘faani’

floating point AAN IDCT

slice_count integer
ec flags (decoding,video)

Set error concealment strategy.
Possible values:
‘guess_mvs’
iterative motion vector (MV) search (slow)
‘deblock’
use strong deblock filter for damaged MBs
‘favor_inter’
favor predicting from the previous frame instead of the current

bits_per_coded_sample integer
pred integer (encoding,video)

Set prediction method.
Possible values:

‘left’
‘plane’
‘median’
aspect rational number (encoding,video)
Set sample aspect ratio.
sar rational number (encoding, video)
Set sample aspect ratio. Alias to aspect.
debug flags (decoding/encoding,audio,video,subtitles)
Print specific debug info.
Possible values:
‘pict’
picture info
rc’
rate control

‘bitstream’
‘mb_type’

macroblock (MB) type

3

qp’

per-block quantization parameter (QP)
mv’

motion vector

‘dct_coeff’
‘green_metadata’

display complexity metadata for the upcoming frame, GoP or for a given duration.

‘skip’

‘startcode’
Gpts’

3

er’
error recognition
‘mmco’
memory management control operations (H.264)

‘bugs’
‘vis_qgp’

visualize quantization parameter (QP), lower QP are tinted greener
‘vis_mb_type’
visualize block types
‘buffers’
picture buffer allocations
‘thread_ops’
threading operations
‘nomc’
skip motion compensation
vismv integer (decoding,video)
Visualize motion vectors (MVs).
This option is deprecated, see the codecview filter instead.

Possible values:

3

pf’

forward predicted MVs of P-frames
bE’
forward predicted MVs of B-frames

‘bb’

backward predicted MVs of B-frames

cmp integer (encoding,video)

Set full pel me compare function.

Possible values:

3 2

sad
sum of absolute differences, fast (default)
‘sse’
sum of squared errors
‘satd’
sum of absolute Hadamard transformed differences
‘det’
sum of absolute DCT transformed differences
‘psnr’
sum of squared quantization errors (avoid, low quality)
‘bit’
number of bits needed for the block
T
rate distortion optimal, slow
‘zero’
0
‘vsad’
sum of absolute vertical differences
‘vsse’
sum of squared vertical differences

‘nsse’

noise preserving sum of squared differences
‘w53’

5/3 wavelet, only used in snow
‘woT’

9/7 wavelet, only used in snow

‘dctmax’
‘chroma’
subcmp integer (encoding,video)

Set sub pel me compare function.
Possible values:
‘sad’
sum of absolute differences, fast (default)
‘sse’
sum of squared errors
‘satd’
sum of absolute Hadamard transformed differences
‘det’
sum of absolute DCT transformed differences
‘psnr’
sum of squared quantization errors (avoid, low quality)
‘bit’
number of bits needed for the block
rd
rate distortion optimal, slow

¢ 9
zero

0
‘vsad’

sum of absolute vertical differences
‘vsse’

sum of squared vertical differences
‘nsse’

noise preserving sum of squared differences
‘w53’

5/3 wavelet, only used in snow
‘woT’

9/7 wavelet, only used in snow

‘dctmax’
‘chroma’
mbcmp integer (encoding, video)

Set macroblock compare function.

Possible values:

3 ’

sad
sum of absolute differences, fast (default)
‘sse’
sum of squared errors
‘satd’
sum of absolute Hadamard transformed differences
‘det’
sum of absolute DCT transformed differences

¢ 9
psnr

sum of squared quantization errors (avoid, low quality)
‘bit’

number of bits needed for the block

rd
rate distortion optimal, slow
‘zero’
0
‘vsad’
sum of absolute vertical differences
‘vsse’
sum of squared vertical differences
‘nsse’
noise preserving sum of squared differences
‘w53’
5/3 wavelet, only used in snow
‘woT’
9/7 wavelet, only used in snow
‘dectmax’
‘chroma’

ildctcmp integer (encoding,video)
Set interlaced dct compare function.

Possible values:

3 ’

sad
sum of absolute differences, fast (default)

3 2

sse

sum of squared errors
‘satd’
sum of absolute Hadamard transformed differences
‘det’
sum of absolute DCT transformed differences
‘psnr’
sum of squared quantization errors (avoid, low quality)
‘bit’
number of bits needed for the block
rd
rate distortion optimal, slow
‘zero’
0
‘vsad’
sum of absolute vertical differences
‘vsse’
sum of squared vertical differences
‘nsse’
noise preserving sum of squared differences
‘w53’
5/3 wavelet, only used in snow
‘wo7’
9/7 wavelet, only used in snow

‘detmax’
‘chroma’

dia_size integer (encoding,video)

Set diamond type & size for motion estimation.
last_pred integer (encoding,video)

Set amount of motion predictors from the previous frame.
preme integer (encoding,video)

Set pre motion estimation.
precmp integer (encoding,video)

Set pre motion estimation compare function.

Possible values:

3 ’

sad
sum of absolute differences, fast (default)
‘sse’
sum of squared errors
‘satd’
sum of absolute Hadamard transformed differences
‘det’
sum of absolute DCT transformed differences
‘psnr’
sum of squared quantization errors (avoid, low quality)
‘bit’
number of bits needed for the block
T
rate distortion optimal, slow

¢ b
zero

0
‘vsad’

sum of absolute vertical differences
‘vsse’

sum of squared vertical differences
‘nsse’

noise preserving sum of squared differences
‘w53’

5/3 wavelet, only used in snow
‘woT’

9/7 wavelet, only used in snow

‘detmax’
‘chroma’
pre_dia_size integer (encoding,video)

Set diamond type & size for motion estimation pre-pass.
subqg integer (encoding,video)
Set sub pel motion estimation quality.

dtg_active_format integer
me_range integer (encoding,video)

Set limit motion vectors range (1023 for DivX player).
ibias integer (encoding, video)

Set intra quant bias.
pbias integer (encoding,video)

Set inter quant bias.

color_table_id integer
global_quality integer (encoding,audio,video)
coder integer (encoding,video)

Possible values:

3 2

vlic
variable length coder / huffman coder
ac’
arithmetic coder

raw

raw (no encoding)

3 s

rle
run-length coder
‘deflate’
deflate-based coder
context integer (encoding,video)
Set context model.
slice_flags integer
xvmc_acceleration integer
mbd integer (encoding,video)
Set macroblock decision algorithm (high quality mode).
Possible values:
‘simple’
use mbcmp (default)
‘bits’
use fewest bits
rd’
use best rate distortion

stream_codec_tag integer
sc_threshold integer (encoding,video)

Set scene change threshold.
lmin integer (encoding,video)
Set min lagrange factor (VBR).
lmax integer (encoding,video)
Set max lagrange factor (VBR).
nr integer (encoding,video)
Set noise reduction.
rc_init_occupancy integer (encoding,video)
Set number of bits which should be loaded into the rc buffer before decoding starts.
flags2 flags (decoding/encoding, audio, video)
Possible values:
‘fast’
Allow non spec compliant speedup tricks.
‘sgop’
Deprecated, use mpegvideo private options instead.
‘noout’
Skip bitstream encoding.
‘ignorecrop’
Ignore cropping information from sps.
‘local_header’
Place global headers at every keyframe instead of in extradata.
‘chunks’
Frame data might be split into multiple chunks.

‘showall’

Show all frames before the first keyframe.
‘skiprd’
Deprecated, use mpegvideo private options instead.

‘export_mvs’

Export motion vectors into frame side-data (see AV_FRAME_DATA_MOTION_VECTORS) for
codecs that support it. See also doc/examples/export_mvs.c.

error integer (encoding,video)
gns integer (encoding,video)

Deprecated, use mpegvideo private options instead.
threads integer (decoding/encoding,video)

Set the number of threads to be used, in case the selected codec implementation supports
multi-threading.

Possible values:
‘auto, 0’
automatically select the number of threads to set
Default value is ‘auto’.
me_threshold integer (encoding,video)
Set motion estimation threshold.
mb_threshold integer (encoding,video)
Set macroblock threshold.
dc integer (encoding,video)
Set intra_dc_precision.
nssew integer (encoding,video)
Set nsse weight.
skip_top integer (decoding,video)

Set number of macroblock rows at the top which are skipped.

skip_bottom integer (decoding, video)

Set number of macroblock rows at the bottom which are skipped.
profile integer (encoding,audio,video)

Possible values:

‘unknown’
‘aac_main’
‘aac_low’
‘aac_ssr’
‘aac_ltp’
‘aac_he’
‘aac_he_ v2’
‘aac_1ld’
‘aac_eld’
‘mpeg2_aac_low’
‘mpeg2_aac_he’
‘mpegd_sp’
‘mpeg4_core’
‘mpeg4_main’
‘mpeg4_asp’
‘dts’
‘dts_es’
‘dts_96_24°
‘dts_hd_hra’
‘dts_hd_ma’
level integer (encoding,audio, video)

Possible values:

‘unknown’
lowres integer (decoding,audio,video)

Decode at 1= 1/2, 2=1/4, 3=1/8 resolutions.
skip_threshold integer (encoding,video)
Set frame skip threshold.
skip_factor integer (encoding, video)
Set frame skip factor.

skip_exp integer (encoding,video)

Set frame skip exponent. Negative values behave identical to the corresponding positive ones, except
that the score is normalized. Positive values exist primarily for compatibility reasons and are not so useful.

skipcmp integer (encoding,video)
Set frame skip compare function.
Possible values:
‘sad’
sum of absolute differences, fast (default)
‘sse’
sum of squared errors
‘satd’
sum of absolute Hadamard transformed differences
‘det’
sum of absolute DCT transformed differences
‘psnr’
sum of squared quantization errors (avoid, low quality)
‘bit’
number of bits needed for the block
d
rate distortion optimal, slow
‘zero’
0
‘vsad’
sum of absolute vertical differences

‘vsse’

sum of squared vertical differences

‘nsse’

noise preserving sum of squared differences
‘wb3’

5/3 wavelet, only used in snow
‘woT’

9/7 wavelet, only used in snow

‘dectmax’
‘chroma’
border_mask float (encoding,video)

Increase the quantizer for macroblocks close to borders.
mblmin integer (encoding,video)

Set min macroblock lagrange factor (VBR).
mblmax integer (encoding,video)

Set max macroblock lagrange factor (VBR).
mepc integer (encoding,video)

Set motion estimation bitrate penalty compensation (1.0 = 256).
skip_loop_filter integer (decoding,video)
skip_idct integer (decoding,video)
skip_frame integer (decoding,video)

Make decoder discard processing depending on the frame type selected by the option value.

skip_loop_filter skips frame loop filtering, skip_idct skips frame IDCT/dequantization,
skip_frame skips decoding.

Possible values:
‘none’

Discard no frame.
‘default’

Discard useless frames like 0-sized frames.

‘noref’
Discard all non-reference frames.
‘bidir’
Discard all bidirectional frames.
‘nokey’
Discard all frames excepts keyframes.
‘all’
Discard all frames.
Default value is ‘default’.
bidir_refine integer (encoding, video)
Refine the two motion vectors used in bidirectional macroblocks.
brd_scale integer (encoding, video)
Downscale frames for dynamic B-frame decision.
keyint_min integer (encoding,video)
Set minimum interval between IDR-frames.
refs integer (encoding,video)
Set reference frames to consider for motion compensation.
chromaoffset integer (encoding,video)
Set chroma qp offset from luma.
trellis integer (encoding,audio,video)
Set rate-distortion optimal quantization.
sc_factor integer (encoding,video)
Set value multiplied by gscale for each frame and added to scene_change_score.

mv0_threshold integer (encoding,video)
b_sensitivity integer (encoding,video)

Adjust sensitivity of b_frame_strategy 1.

compression_level integer (encoding,audio,video)
min_prediction_order integer (encoding,audio)
max_prediction_order integer (encoding,audio)
timecode_frame_start integer (encoding,video)

Set GOP timecode frame start number, in non drop frame format.
request_channels integer (decoding,audio)
Set desired number of audio channels.

bits_per_raw_sample integer
channel_layout integer (decoding/encoding,audio)

Possible values:
request_channel_layout integer (decoding,audio)
Possible values:

rc_max_vbv_use float (encoding,video)

rc_min_vbv_use float (encoding,video)

ticks_per_frame integer (decoding/encoding,audio,video)
color_primaries integer (decoding/encoding,video)

Possible values:
‘bt709’

BT.709
‘bt470m’

BT.470 M
‘bt 470bg’

BT.470 BG
‘smptel70m’

SMPTE 170 M
‘smpte240m’

SMPTE 240 M

‘film’
Film
‘bt2020’
BT.2020

‘smpted28’
‘smpted28_1°

SMPTE ST 428-1
‘smpted31’

SMPTE 431-2
‘smpted 32’

SMPTE 432-1
‘Jedec—-p22’

JEDEC P22

color_trc integer (decoding/encoding,video)

Possible values:
‘ot709’

BT.709
‘gamma22’

BT.470 M
‘gamma28’

BT.470 BG
‘smptel70m’

SMPTE 170 M
‘smpte240m’

SMPTE 240 M

‘linear’
Linear

’

‘log
‘logl00’

Log

‘log_sqgrt’
‘log31l6’

Log square root

‘iec61966_2_4°
‘iec61966-2-4"

IEC 61966-2-4

‘bt1361°
‘btl136le’

BT.1361

‘iec61966_2_1’
‘1ec61966-2-1’

IEC 61966-2-1

‘bt2020_10°
‘bt2020_10bit’

BT.2020 - 10 bit

‘bt2020_12°
‘bt2020_12bit’

BT.2020 - 12 bit
‘smpte2084’
SMPTE ST 2084

‘smpted28’
‘smpted28_1°

SMPTE ST 428-1

‘arib-std-b67’
ARIB STD-B67
colorspace integer (decoding/encoding, video)

Possible values:

3 2

rgb
RGB
‘bt709’
BT.709
‘fcc’
FCC
‘bt470bg’
BT.470 BG
‘smptel70m’
SMPTE 170 M
‘smpte240m’
SMPTE 240 M
‘ycocg’
YCOCG

‘bt2020nc’
‘bt2020_ncl’

BT.2020 NCL

‘bt2020c’
‘bt2020_cl’

BT.2020 CL

‘smpte2085’

SMPTE 2085
color_range integer (decoding/encoding,video)

If used as input parameter, it serves as a hint to the decoder, which color_range the input has.
Possible values:

‘tV’

‘mpeg’
MPEG (219%27(n-8))

3

pc’
‘Jjpeg’

JPEG (2”n-1)
chroma_sample_location integer (decoding/encoding,video)
Possible values:

‘left’

‘center’

‘topleft’

‘top’

‘bottomleft’

‘bottom’
log_level_offset integer

Set the log level offset.
slices integer (encoding,video)
Number of slices, used in parallelized encoding.
thread_type flags (decoding/encoding,video)
Select which multithreading methods to use.

Use of ‘frame’ will increase decoding delay by one frame per thread, so clients which cannot
provide future frames should not use it.

Possible values:
‘slice’

Decode more than one part of a single frame at once.

Multithreading using slices works only when the video was encoded with slices.
‘frame’
Decode more than one frame at once.
Default value is ‘slice+frame’.
audio_service_type integer (encoding,audio)
Set audio service type.
Possible values:
‘ma’
Main Audio Service
‘o f’

Effects

Visually Impaired

Hearing Impaired

Dialogue

Commentary

Emergency

Voice Over

‘ka’

Karaoke
request_sample_fmt sample_fmt (decoding,audio)
Set sample format audio decoders should prefer. Default value is none.

pkt_timebase rational number
sub_charenc encoding (decoding,subtitles)

Set the input subtitles character encoding.
field _order field order (video)
Set/override the field order of the video. Possible values:
‘progressive’
Progressive video
‘e
Interlaced video, top field coded and displayed first
‘bb’
Interlaced video, bottom field coded and displayed first
“p’
Interlaced video, top coded first, bottom displayed first
bt
Interlaced video, bottom coded first, top displayed first
skip_alpha bool (decoding,video)

Set to 1 to disable processing alpha (transparency). This works like the ‘gray’ flag in the £1ags
option which skips chroma information instead of alpha. Default is 0.

codec_whitelist 1ist (input)
"," separated list of allowed decoders. By default all are allowed.

dump_separator string (input)

Separator used to separate the fields printed on the command line about the Stream parameters. For
example to separate the fields with newlines and indention:

ffprobe —-dump_separator "
" —-i ~/videos/matrixbench_mpeg2.mpg

max_pixels integer (decoding/encoding, video)

Maximum number of pixels per image. This value can be used to avoid out of memory failures due to
large images.

apply_cropping bool (decoding,video)

Enable cropping if cropping parameters are multiples of the required alignment for the left and top
parameters. If the alignment is not met the cropping will be partially applied to maintain alignment.
Default is 1 (enabled). Note: The required alignment depends on if AV_CODEC_FLAG_UNALIGNED
is set and the CPU. AV_CODEC_FLAG_UNALIGNED cannot be changed from the command line.
Also hardware decoders will not apply left/top Cropping.

11 Decoders#TOC

Decoders are configured elements in FFmpeg which allow the decoding of multimedia streams.

When you configure your FFmpeg build, all the supported native decoders are enabled by default.
Decoders requiring an external library must be enabled manually via the corresponding ——enable-1ib
option. You can list all available decoders using the configure option ——1ist-decoders.

You can disable all the decoders with the configure option ——disable-decoders and selectively
enable / disable single decoders with the options ——enable-decoder=DECODER/
——disable-decoder=DECODER.

The option —decoders of the ff* tools will display the list of enabled decoders.

12 Video Decoders#[TOC

A description of some of the currently available video decoders follows.

12.1 hevdfTOC

HEVC / H.265 decoder.

Note: the skip_loop_filter option has effect only at level all.

12.2 rawvideo#]

Raw video decoder.

This decoder decodes rawvideo streams.

12.2.1 Option§TOC]

top top_field first
Specify the assumed field type of the input video.
-1

the video is assumed to be progressive (default)

bottom-field-first is assumed

top-field-first is assumed

13 Audio Decoders#i[TOC

A description of some of the currently available audio decoders follows.

13.1 ac3H

AC-3 audio decoder.

This decoder implements part of ATSC A/52:2010 and ETSI TS 102 366, as well as the undocumented
RealAudio 3 (a.k.a. dnet).

13.1.1 AC-3 Decoder Optionsf[TOC|

—drc_scale value

Dynamic Range Scale Factor. The factor to apply to dynamic range values from the AC-3 stream.
This factor is applied exponentially. There are 3 notable scale factor ranges:

drc_scale ==
DRC disabled. Produces full range audio.
0 < drc_scale <=1

DRC enabled. Applies a fraction of the stream DRC value. Audio reproduction is between full
range and full compression.

drc_scale > 1

DRC enabled. Applies drc_scale asymmetrically. Loud sounds are fully compressed. Soft
sounds are enhanced.

13.2 fladfTOC

FLAC audio decoder.

This decoder aims to implement the complete FLAC specification from Xiph.

13.2.1 FLAC Decoder optiong#]

—use_buggy_1lpc

The lave FLAC encoder used to produce buggy streams with high Ipc values (like the default value).
This option makes it possible to decode such streams correctly by using lavc’s old buggy Ipc logic for
decoding.

13.3 ffwavesynthi#]

Internal wave synthesizer.

This decoder generates wave patterns according to predefined sequences. Its use is purely internal and the
format of the data it accepts is not publicly documented.

13.4 libcelffiTOC

libcelt decoder wrapper.

libcelt allows libavcodec to decode the Xiph CELT ultra-low delay audio codec. Requires the presence of
the libcelt headers and library during configuration. You need to explicitly configure the build with
——enable-libcelt.

13.5 libgsmf[TO(]

libgsm decoder wrapper.

libgsm allows libavcodec to decode the GSM full rate audio codec. Requires the presence of the libgsm
headers and library during configuration. You need to explicitly configure the build with
——enable-libgsmn.

This decoder supports both the ordinary GSM and the Microsoft variant.

13.6 libilbd#[TO(

libilbc decoder wrapper.

libilbc allows libavcodec to decode the Internet Low Bitrate Codec (iLBC) audio codec. Requires the
presence of the libilbc headers and library during configuration. You need to explicitly configure the build
with ——enable-1libilbc.

13.6.1 Optiond#]

The following option is supported by the libilbc wrapper.
enhance

Enable the enhancement of the decoded audio when set to 1. The default value is O (disabled).

13.7 libopencore-amrnbf

libopencore-amrnb decoder wrapper.

libopencore-amrnb allows libavcodec to decode the Adaptive Multi-Rate Narrowband audio codec. Using
it requires the presence of the libopencore-amrnb headers and library during configuration. You need to
explicitly configure the build with ——enable-libopencore—amrnb.

An FFmpeg native decoder for AMR-NB exists, so users can decode AMR-NB without this library.

13.8 libopencore-amrwh#]

libopencore-amrwb decoder wrapper.

libopencore-amrwb allows libavcodec to decode the Adaptive Multi-Rate Wideband audio codec. Using it
requires the presence of the libopencore-amrwb headers and library during configuration. You need to
explicitly configure the build with ——enable-1libopencore—amrwb.

An FFmpeg native decoder for AMR-WB exists, so users can decode AMR-WB without this library.

13.9 libopus#|TOC

libopus decoder wrapper.

libopus allows libavcodec to decode the Opus Interactive Audio Codec. Requires the presence of the
libopus headers and library during configuration. You need to explicitly configure the build with
——enable-libopus.

An FFmpeg native decoder for Opus exists, so users can decode Opus without this library.

14 Subtitles Decoders#i[TOC

14.1 dvbsubf#]
14.1.1 OptiongTO(]

compute_clut
-1

Compute clut if no matching CLUT is in the stream.
Never compute CLUT

Always compute CLUT and override the one provided in the stream.
dvb_substream

Selects the dvb substream, or all substreams if -1 which is default.

14.2 dvdsub#[TO(C

This codec decodes the bitmap subtitles used in DVDs; the same subtitles can also be found in VobSub
file pairs and in some Matroska files.

14.2.1 Optiond#]

palette

Specify the global palette used by the bitmaps. When stored in VobSub, the palette is normally
specified in the index file; in Matroska, the palette is stored in the codec extra-data in the same format
as in VobSub. In DVDs, the palette is stored in the IFO file, and therefore not available when reading
from dumped VOB files.

The format for this option is a string containing 16 24-bits hexadecimal numbers (without Ox prefix)
separated by comas, for example 0d00ee, eed450d, 101010, eaeaea, 0Oce60b,
ecl4ed, ebfflOb, 0d6l17a, 7b7b7b, dldldl, 7b2ale, 0d950c, 0£007b,
cfOdec, cfa80c, 7cl27b.

ifo_palette
Specify the IFO file from which the global palette is obtained. (experimental)

forced_subs_only

Only decode subtitle entries marked as forced. Some titles have forced and non-forced subtitles in the
same track. Setting this flag to 1 will only keep the forced subtitles. Default value is O.

14.3 libzvbi-teletext#]

Libzvbi allows libavcodec to decode DVB teletext pages and DVB teletext subtitles. Requires the
presence of the libzvbi headers and library during configuration. You need to explicitly configure the build
with ——enable-libzvbi.

14.3.1 Optiond#]

txt_page

List of teletext page numbers to decode. You may use the special * string to match all pages. Pages
that do not match the specified list are dropped. Default value is *.

txt_chop_top
Discards the top teletext line. Default value is 1.
txt_format

Specifies the format of the decoded subtitles. The teletext decoder is capable of decoding the teletext
pages to bitmaps or to simple text, you should use "bitmap" for teletext pages, because certain
graphics and colors cannot be expressed in simple text. You might use "text" for teletext based
subtitles if your application can handle simple text based subtitles. Default value is bitmap.

txt_left

X offset of generated bitmaps, default is 0.
txt_top

Y offset of generated bitmaps, default is 0.
txt_chop_spaces

Chops leading and trailing spaces and removes empty lines from the generated text. This option is
useful for teletext based subtitles where empty spaces may be present at the start or at the end of the
lines or empty lines may be present between the subtitle lines because of double-sized teletext
characters. Default value is 1.

txt_duration

Sets the display duration of the decoded teletext pages or subtitles in milliseconds. Default value is
30000 which is 30 seconds.

txt_transparent

Force transparent background of the generated teletext bitmaps. Default value is 0 which means an
opaque background.

txt_opacity

Sets the opacity (0-255) of the teletext background. If txt_transparent is not set, it only affects
characters between a start box and an end box, typically subtitles. Default value is O if
txt_transparent is set, 255 otherwise.

15 Encoders#[TOC

Encoders are configured elements in FFmpeg which allow the encoding of multimedia streams.

When you configure your FFmpeg build, all the supported native encoders are enabled by default.
Encoders requiring an external library must be enabled manually via the corresponding ——enable-1ib
option. You can list all available encoders using the configure option ——1ist-encoders.

You can disable all the encoders with the configure option ——disable-encoders and selectively
enable / disable single encoders with the options ——enable-encoder=ENCODER/
——disable—-encoder=ENCODER.

The option —encoders of the ff* tools will display the list of enabled encoders.

16 Audio Encodersf|TOC

A description of some of the currently available audio encoders follows.

16.1 aad#TO(Q

Advanced Audio Coding (AAC) encoder.

This encoder is the default AAC encoder, natively implemented into FFmpeg. Its quality is on par or better
than libfdk_aac at the default bitrate of 128kbps. This encoder also implements more options, profiles and
samplerates than other encoders (with only the AAC-HE profile pending to be implemented) so this
encoder has become the default and is the recommended choice.

16.1.1 Optiond#]
b

Set bit rate in bits/s. Setting this automatically activates constant bit rate (CBR) mode. If this option is
unspecified it is set to 128kbps.

Set quality for variable bit rate (VBR) mode. This option is valid only using the f fmpeg
command-line tool. For library interface users, use global_quality.

cutoff

Set cutoff frequency. If unspecified will allow the encoder to dynamically adjust the cutoff to
improve clarity on low bitrates.

aac_coder
Set AAC encoder coding method. Possible values:
‘twoloop’
Two loop searching (TLS) method.

This method first sets quantizers depending on band thresholds and then tries to find an optimal
combination by adding or subtracting a specific value from all quantizers and adjusting some
individual quantizer a little. Will tune itself based on whether aac_is, aac_ms and aac_pns
are enabled. This is the default choice for a coder.

‘anmr’
Average noise to mask ratio (ANMR) trellis-based solution.

This is an experimental coder which currently produces a lower quality, is more unstable and is
slower than the default twoloop coder but has potential. Currently has no support for the
aac_is or aac_pns options. Not currently recommended.

‘fast’
Constant quantizer method.

This method sets a constant quantizer for all bands. This is the fastest of all the methods and has
no rate control or support for aac_is or aac_pns. Not recommended.

aac_ms

Sets mid/side coding mode. The default value of "auto" will automatically use M/S with bands which
will benefit from such coding. Can be forced for all bands using the value "enable", which is mainly
useful for debugging or disabled using "disable".

aac_1is
Sets intensity stereo coding tool usage. By default, it’s enabled and will automatically toggle IS for

similar pairs of stereo bands if it’s beneficial. Can be disabled for debugging by setting the value to
"disable".

aac_pns

Uses perceptual noise substitution to replace low entropy high frequency bands with imperceptible
white noise during the decoding process. By default, it’s enabled, but can be disabled for debugging
purposes by using "disable".

aac_tns

Enables the use of a multitap FIR filter which spans through the high frequency bands to hide
quantization noise during the encoding process and is reverted by the decoder. As well as decreasing
unpleasant artifacts in the high range this also reduces the entropy in the high bands and allows for
more bits to be used by the mid-low bands. By default it’s enabled but can be disabled for debugging
by setting the option to "disable".

aac_ltp

Enables the use of the long term prediction extension which increases coding efficiency in very low
bandwidth situations such as encoding of voice or solo piano music by extending constant harmonic
peaks in bands throughout frames. This option is implied by profile:a aac_low and is incompatible
with aac_pred. Use in conjunction with —ar to decrease the samplerate.

aac_pred

Enables the use of a more traditional style of prediction where the spectral coefficients transmitted
are replaced by the difference of the current coefficients minus the previous "predicted" coefficients.
In theory and sometimes in practice this can improve quality for low to mid bitrate audio. This option
implies the aac_main profile and is incompatible with aac_ltp.

profile
Sets the encoding profile, possible values:
‘aac_low’

The default, AAC "Low-complexity" profile. Is the most compatible and produces decent
quality.

‘mpeg2_aac_low’

Equivalentto -profile:a aac_low —aac_pns 0.PNS was introduced with the MPEG4
specifications.

‘aac_ltp’

Long term prediction profile, is enabled by and will enable the aac_1tp option. Introduced in
MPEG4.

‘aac_main’

Main-type prediction profile, is enabled by and will enable the aac_pred option. Introduced in
MPEG?2.

If this option is unspecified it is set to ‘aac_low’.

16.2 ac3 and ac3_fixed#]

AC-3 audio encoders.

These encoders implement part of ATSC A/52:2010 and ETSI TS 102 366, as well as the undocumented
RealAudio 3 (a.k.a. dnet).

The ac3 encoder uses floating-point math, while the ac3_fixed encoder only uses fixed-point integer math.
This does not mean that one is always faster, just that one or the other may be better suited to a particular
system. The floating-point encoder will generally produce better quality audio for a given bitrate. The
ac3_fixed encoder is not the default codec for any of the output formats, so it must be specified explicitly
using the option —acodec ac3_fixed in order to use it.

16.2.1 AC-3 Metadataf|TOC

The AC-3 metadata options are used to set parameters that describe the audio, but in most cases do not
affect the audio encoding itself. Some of the options do directly affect or influence the decoding and
playback of the resulting bitstream, while others are just for informational purposes. A few of the options
will add bits to the output stream that could otherwise be used for audio data, and will thus affect the
quality of the output. Those will be indicated accordingly with a note in the option list below.

These parameters are described in detail in several publicly-available documents.

[A/52:2010 - Digital Audio Compression (AC-3) (E-AC-3) Standard|
[A/54 - Guide to the Use of the ATSC Digital Television Standard|
[Dolby Metadata Guide]

[Dolby Digital Professional Encoding Guidelines|

16.2.1.1 Metadata Control Optionsf[TOC]

-per_frame_metadata boolean

Allow Per-Frame Metadata. Specifies if the encoder should check for changing metadata for each
frame.

0

The metadata values set at initialization will be used for every frame in the stream. (default)

http://www.atsc.org/cms/standards/a_52-2010.pdf
http://www.atsc.org/cms/standards/a_54a_with_corr_1.pdf
http://www.dolby.com/uploadedFiles/zz-_Shared_Assets/English_PDFs/Professional/18_Metadata.Guide.pdf
http://www.dolby.com/uploadedFiles/zz-_Shared_Assets/English_PDFs/Professional/46_DDEncodingGuidelines.pdf

Metadata values can be changed before encoding each frame.

16.2.1.2 Downmix Leveld#]

—center_mixlev level

Center Mix Level. The amount of gain the decoder should apply to the center channel when
downmixing to stereo. This field will only be written to the bitstream if a center channel is present.
The value is specified as a scale factor. There are 3 valid values:

0.707
Apply -3dB gain
0.595
Apply -4.5dB gain (default)
0.500
Apply -6dB gain
—surround_mixlev level

Surround Mix Level. The amount of gain the decoder should apply to the surround channel(s) when
downmixing to stereo. This field will only be written to the bitstream if one or more surround
channels are present. The value is specified as a scale factor. There are 3 valid values:

0.707

Apply -3dB gain
0.500

Apply -6dB gain (default)
0.000

Silence Surround Channel(s)

16.2.1.3 Audio Production Information]

Audio Production Information is optional information describing the mixing environment. Either none or
both of the fields are written to the bitstream.

-mixing_level number

Mixing Level. Specifies peak sound pressure level (SPL) in the production environment when the
mix was mastered. Valid values are 80 to 111, or -1 for unknown or not indicated. The default value
is -1, but that value cannot be used if the Audio Production Information is written to the bitstream.

Therefore, if the room_type option is not the default value, the mixing_level option must not
be -1.

—room_type type

Room Type. Describes the equalization used during the final mixing session at the studio or on the
dubbing stage. A large room is a dubbing stage with the industry standard X-curve equalization; a
small room has flat equalization. This field will not be written to the bitstream if both the
mixing_level option and the room_type option have the default values.

0
notindicated

Not Indicated (default)

1
large

Large Room

2
small

Small Room

16.2.1.4 Other Metadata Options#]
—copyright boolean
Copyright Indicator. Specifies whether a copyright exists for this audio.

0
off

No Copyright Exists (default)

on
Copyright Exists

—-dialnorm value

Dialogue Normalization. Indicates how far the average dialogue level of the program is below digital
100% full scale (0 dBFS). This parameter determines a level shift during audio reproduction that sets the
average volume of the dialogue to a preset level. The goal is to match volume level between program
sources. A value of -31dB will result in no volume level change, relative to the source volume, during
audio reproduction. Valid values are whole numbers in the range -31 to -1, with -31 being the default.

—dsur_mode mode

Dolby Surround Mode. Specifies whether the stereo signal uses Dolby Surround (Pro Logic). This
field will only be written to the bitstream if the audio stream is stereo. Using this option does NOT
mean the encoder will actually apply Dolby Surround processing.

0
notindicated

Not Indicated (default)

1
off

Not Dolby Surround Encoded

on
Dolby Surround Encoded
—-original boolean
Original Bit Stream Indicator. Specifies whether this audio is from the original source and not a copy.

0
off

Not Original Source

on

Original Source (default)

16.2.2 Extended Bitstream Informationf]

The extended bitstream options are part of the Alternate Bit Stream Syntax as specified in Annex D of the
A/52:2010 standard. It is grouped into 2 parts. If any one parameter in a group is specified, all values in
that group will be written to the bitstream. Default values are used for those that are written but have not
been specified. If the mixing levels are written, the decoder will use these values instead of the ones
specified in the center_mixlev and surround_mixlev options if it supports the Alternate Bit
Stream Syntax.

16.2.2.1 Extended Bitstream Information - Part 1#[TOC]

—dmix_mode mode

Preferred Stereo Downmix Mode. Allows the user to select either Lt/Rt (Dolby Surround) or Lo/Ro
(normal stereo) as the preferred stereo downmix mode.

0
notindicated

Not Indicated (default)

1
ltrt

Lt/Rt Downmix Preferred

2
loro

Lo/Ro Downmix Preferred
—-ltrt_cmixlev level

Lt/Rt Center Mix Level. The amount of gain the decoder should apply to the center channel when
downmixing to stereo in Lt/Rt mode.

1.414

Apply +3dB gain
1.189

Apply +1.5dB gain
1.000

Apply 0dB gain
0.841

Apply -1.5dB gain
0.707

Apply -3.0dB gain

0.595

Apply -4.5dB gain (default)
0.500
Apply -6.0dB gain
0.000
Silence Center Channel
-ltrt_surmixlev level

Lt/Rt Surround Mix Level. The amount of gain the decoder should apply to the surround channel(s)
when downmixing to stereo in Lt/Rt mode.

0.841
Apply -1.5dB gain
0.707
Apply -3.0dB gain
0.595
Apply -4.5dB gain
0.500
Apply -6.0dB gain (default)
0.000
Silence Surround Channel(s)
—loro_cmixlev level

Lo/Ro Center Mix Level. The amount of gain the decoder should apply to the center channel when
downmixing to stereo in Lo/Ro mode.

1.414
Apply +3dB gain
1.189

Apply +1.5dB gain

1.000

Apply 0dB gain
0.841

Apply -1.5dB gain
0.707

Apply -3.0dB gain
0.595

Apply -4.5dB gain (default)
0.500

Apply -6.0dB gain
0.000

Silence Center Channel

—loro_surmixlev level

Lo/Ro Surround Mix Level. The amount of gain the decoder should apply to the surround channel(s)
when downmixing to stereo in Lo/Ro mode.

0.841
Apply -1.5dB gain
0.707
Apply -3.0dB gain
0.595
Apply -4.5dB gain
0.500
Apply -6.0dB gain (default)
0.000

Silence Surround Channel(s)

16.2.2.2 Extended Bitstream Information - Part 2

—dsurex_mode mode
Dolby Surround EX Mode. Indicates whether the stream uses Dolby Surround EX (7.1 matrixed to
5.1). Using this option does NOT mean the encoder will actually apply Dolby Surround EX

processing.

0
notindicated

Not Indicated (default)

on
Dolby Surround EX Off

2
off

Dolby Surround EX On
—dheadphone_mode mode

Dolby Headphone Mode. Indicates whether the stream uses Dolby Headphone encoding
(multi-channel matrixed to 2.0 for use with headphones). Using this option does NOT mean the
encoder will actually apply Dolby Headphone processing.

0
notindicated

Not Indicated (default)

on
Dolby Headphone Off

2
off

Dolby Headphone On
—ad_conv_type type

A/D Converter Type. Indicates whether the audio has passed through HDCD A/D conversion.

0
standard

Standard A/D Converter (default)

1
hdcd

HDCD A/D Converter

16.2.3 Other AC-3 Encoding OptiongTO(

—-stereo_rematrixing boolean

Stereo Rematrixing. Enables/Disables use of rematrixing for stereo input. This is an optional AC-3
feature that increases quality by selectively encoding the left/right channels as mid/side. This option
is enabled by default, and it is highly recommended that it be left as enabled except for testing
purposes.

cutoff frequency

Set lowpass cutoff frequency. If unspecified, the encoder selects a default determined by various
other encoding parameters.

16.2.4 Floating-Point-Only AC-3 Encoding Options#]

These options are only valid for the floating-point encoder and do not exist for the fixed-point encoder due
to the corresponding features not being implemented in fixed-point.

—channel_coupling boolean

Enables/Disables use of channel coupling, which is an optional AC-3 feature that increases quality by
combining high frequency information from multiple channels into a single channel. The per-channel
high frequency information is sent with less accuracy in both the frequency and time domains. This
allows more bits to be used for lower frequencies while preserving enough information to reconstruct
the high frequencies. This option is enabled by default for the floating-point encoder and should
generally be left as enabled except for testing purposes or to increase encoding speed.

-1
auto

Selected by Encoder (default)

0
off

Disable Channel Coupling

on
Enable Channel Coupling
—-cpl_start_band number

Coupling Start Band. Sets the channel coupling start band, from 1 to 15. If a value higher than the
bandwidth is used, it will be reduced to 1 less than the coupling end band. If auto is used, the start
band will be determined by the encoder based on the bit rate, sample rate, and channel layout. This
option has no effect if channel coupling is disabled.

-1
auto

Selected by Encoder (default)

16.3 flad#]

FLAC (Free Lossless Audio Codec) Encoder

16.3.1 Optiond#]

The following options are supported by FFmpeg’s flac encoder.
compression_level

Sets the compression level, which chooses defaults for many other options if they are not set
explicitly. Valid values are from O to 12, 5 is the default.

frame_size

Sets the size of the frames in samples per channel.
lpc_coeff_precision

Sets the LPC coefficient precision, valid values are from 1 to 15, 15 is the default.
lpc_type

Sets the first stage LPC algorithm

‘none’

LPC is not used

‘fixed’

fixed LPC coefficients

‘levinson’
‘cholesky’
lpc_passes

Number of passes to use for Cholesky factorization during LPC analysis
min_partition_order

The minimum partition order
max_partition_order

The maximum partition order

prediction_order_method
‘estimation’
‘2level’
‘4level’
‘8level’
‘search’

Bruteforce search

>

‘log
ch_mode

Channel mode
‘auto’
The mode is chosen automatically for each frame
‘indep’
Channels are independently coded
‘left_side’
‘right_side’
‘mid_side’
exact_rice_parameters

Chooses if rice parameters are calculated exactly or approximately. if set to 1 then they are chosen
exactly, which slows the code down slightly and improves compression slightly.

multi_dim_quant

Multi Dimensional Quantization. If set to 1 then a 2nd stage LPC algorithm is applied after the first
stage to finetune the coefficients. This is quite slow and slightly improves compression.

16.4 opus#TOC]

Opus encoder.

This is a native FFmpeg encoder for the Opus format. Currently its in development and only implements
the CELT part of the codec. Its quality is usually worse and at best is equal to the libopus encoder.

16.4.1 Optiond#]

b

Set bit rate in bits/s. If unspecified it uses the number of channels and the layout to make a good
guess.

opus_delay

Sets the maximum delay in milliseconds. Lower delays than 20ms will very quickly decrease quality.

16.5 libfdk_aad#[TO(C

libfdk-aac AAC (Advanced Audio Coding) encoder wrapper.
The libfdk-aac library is based on the Fraunhofer FDK AAC code from the Android project.

Requires the presence of the libfdk-aac headers and library during configuration. You need to explicitly
configure the build with ——enable-1libfdk-aac. The library is also incompatible with GPL, so if you
allow the use of GPL, you should configure with ——enable—-gpl —--enable-nonfree
——enable-libfdk-aac.

This encoder is considered to produce output on par or worse at 128kbps to the the native FFmpeg AAC |
[encoder but can often produce better sounding audio at identical or lower bitrates and has support for the
AAC-HE profiles.

VBR encoding, enabled through the vbr or flags +gscale options, is experimental and only works
with some combinations of parameters.

Support for encoding 7.1 audio is only available with libfdk-aac 0.1.3 or higher.

For more information see the fdk-aac project at jttp://sourceforge.net/p/opencore-amr/fdk-aac/}

http://sourceforge.net/p/opencore-amr/fdk-aac/

16.5.1 Option§#TOC]

The following options are mapped on the shared FFmpeg codec options.
b

Set bit rate in bits/s. If the bitrate is not explicitly specified, it is automatically set to a suitable value
depending on the selected profile.

In case VBR mode is enabled the option is ignored.
ar

Set audio sampling rate (in Hz).
channels

Set the number of audio channels.
flags +gscale

Enable fixed quality, VBR (Variable Bit Rate) mode. Note that VBR is implicitly enabled when the
vbr value is positive.

cutoff

Set cutoff frequency. If not specified (or explicitly set to 0) it will use a value automatically
computed by the library. Default value is 0.

profile
Set audio profile.
The following profiles are recognized:
‘aac_low’
Low Complexity AAC (LC)
‘aac_he’
High Efficiency AAC (HE-AAC)
‘aac_he_v2’
High Efficiency AAC version 2 (HE-AACv2)

‘aac_ld’

Low Delay AAC (LD)
‘aac_eld’
Enhanced Low Delay AAC (ELD)
If not specified it is set to ‘aac_low’.
The following are private options of the libfdk_aac encoder.
afterburner

Enable afterburner feature if set to 1, disabled if set to 0. This improves the quality but also the
required processing power.

Default value is 1.
eld_sbr
Enable SBR (Spectral Band Replication) for ELD if set to 1, disabled if set to 0.
Default value is 0.
signaling
Set SBR/PS signaling style.
It can assume one of the following values:
‘default’
choose signaling implicitly (explicit hierarchical by default, implicit if global header is disabled)
‘implicit’
implicit backwards compatible signaling
‘explicit_sbr’
explicit SBR, implicit PS signaling
‘explicit_hierarchical’
explicit hierarchical signaling
Default value is ‘default’.

latm

Output LATM/LOAS encapsulated data if set to 1, disabled if set to 0.
Default value is 0.
header_period

Set StreamMuxConfig and PCE repetition period (in frames) for sending in-band configuration
buffers within LATM/LOAS transport layer.

Must be a 16-bits non-negative integer.
Default value is 0.
vbr

Set VBR mode, from 1 to 5. 1 is lowest quality (though still pretty good) and 5 is highest quality. A
value of 0 will disable VBR, and CBR (Constant Bit Rate) is enabled.

Currently only the ‘aac_low’ profile supports VBR encoding.

VBR modes 1-5 correspond to roughly the following average bit rates:

R

32 kbps/channel
e

40 kbps/channel
‘37

48-56 kbps/channel
e

64 kbps/channel
‘5

about 80-96 kbps/channel

Default value is O.

16.5.2 Examples#]

® Use ffmpeg to convert an audio file to VBR AAC in an M4A (MP4) container:

ffmpeg —-i input.wav -codec:a libfdk_aac -vbr 3 output.mda

® Use ffmpeg to convert an audio file to CBR 64k kbps AAC, using the High-Efficiency AAC
profile:

ffmpeg —-i input.wav -c:a libfdk_aac -profile:a aac_he -b:a 64k output.mda

16.6 libmp3lame#[TOC

LAME (Lame Ain’t an MP3 Encoder) MP3 encoder wrapper.

Requires the presence of the libmp3lame headers and library during configuration. You need to explicitly
configure the build with ——enable-libmp3lame.

See for a fixed-point MP3 encoder, although with a lower quality.

16.6.1 Optiond#]

The following options are supported by the libmp3lame wrapper. The 1ame-equivalent of the options are
listed in parentheses.

b (-b)
Set bitrate expressed in bits/s for CBR or ABR. LAME bitrate is expressed in kilobits/s.
a (-V)

Set constant quality setting for VBR. This option is valid only using the £ fmpeg command-line tool.
For library interface users, use global_quality.

compression_level (-Qq)

Set algorithm quality. Valid arguments are integers in the 0-9 range, with 0 meaning highest quality
but slowest, and 9 meaning fastest while producing the worst quality.

cutoff (—--lowpass)
Set lowpass cutoff frequency. If unspecified, the encoder dynamically adjusts the cutoff.
reservoir

Enable use of bit reservoir when set to 1. Default value is 1. LAME has this enabled by default, but
can be overridden by use ——nores option.

joint_stereo (-m 7)

Enable the encoder to use (on a frame by frame basis) either L/R stereo or mid/side stereo. Default
value is 1.

abr (——-abr)

Enable the encoder to use ABR when set to 1. The 1ame ——abr sets the target bitrate, while this
options only tells FFmpeg to use ABR still relies on b to set bitrate.

16.7 libopencore-amrnbf]

OpenCORE Adaptive Multi-Rate Narrowband encoder.

Requires the presence of the libopencore-amrnb headers and library during configuration. You need to
explicitly configure the build with ——enable-libopencore—amrnb —--enable-version3.

This is a mono-only encoder. Officially it only supports 8000Hz sample rate, but you can override it by
setting strict to ‘unofficial’ or lower.

16.7.1 Option§f|TOC|

b

Set bitrate in bits per second. Only the following bitrates are supported, otherwise libavcodec will
round to the nearest valid bitrate.

4750
5150
5900
6700
7400
7950
10200
12200
dtx

Allow discontinuous transmission (generate comfort noise) when set to 1. The default value is 0
(disabled).

16.8 libopus#iTO(C

libopus Opus Interactive Audio Codec encoder wrapper.

Requires the presence of the libopus headers and library during configuration. You need to explicitly
configure the build with ——enable-1libopus.

16.8.1 Option Mapping#|

Most libopus options are modelled after the opusenc utility from opus-tools. The following is an option
mapping chart describing options supported by the libopus wrapper, and their opusenc-equivalent in
parentheses.

b (bitrate)

Set the bit rate in bits/s. FFmpeg’s b option is expressed in bits/s, while opusenc’s bitrate in
kilobits/s.

vbr (vbr, hard-cbr, and cvbr)

Set VBR mode. The FFmpeg vbr option has the following valid arguments, with the opusenc
equivalent options in parentheses:

‘off (hard-cbhr)’
Use constant bit rate encoding.
‘on (vbr)’
Use variable bit rate encoding (the default).
‘constrained (cvbr)’
Use constrained variable bit rate encoding.
compression_level (comp)

Set encoding algorithm complexity. Valid options are integers in the 0-10 range. O gives the fastest
encodes but lower quality, while 10 gives the highest quality but slowest encoding. The default is 10.

frame_duration (framesize)

Set maximum frame size, or duration of a frame in milliseconds. The argument must be exactly the
following: 2.5, 5, 10, 20, 40, 60. Smaller frame sizes achieve lower latency but less quality at a given
bitrate. Sizes greater than 20ms are only interesting at fairly low bitrates. The default is 20m:s.

packet_loss (expect-loss)
Set expected packet loss percentage. The default is 0.
application (N.A.)
Set intended application type. Valid options are listed below:
‘voip’
Favor improved speech intelligibility.
‘audio’

Favor faithfulness to the input (the default).

‘lowdelay’
Restrict to only the lowest delay modes.
cutoff (N.A.)

Set cutoff bandwidth in Hz. The argument must be exactly one of the following: 4000, 6000, 8000,
12000, or 20000, corresponding to narrowband, mediumband, wideband, super wideband, and
fullband respectively. The default is O (cutoff disabled).

mapping_family (mapping_ family)

Set channel mapping family to be used by the encoder. The default value of -1 uses mapping family 0
for mono and stereo inputs, and mapping family 1 otherwise. The default also disables the surround
masking and LFE bandwidth optimzations in libopus, and requires that the input contains 8 channels
or fewer.

Other values include 0 for mono and stereo, 1 for surround sound with masking and LFE bandwidth
optimizations, and 255 for independent streams with an unspecified channel layout.

16.9 libshing#|TOC|

Shine Fixed-Point MP3 encoder wrapper.

Shine is a fixed-point MP3 encoder. It has a far better performance on platforms without an FPU, e.g.
armel CPUs, and some phones and tablets. However, as it is more targeted on performance than quality, it
is not on par with LAME and other production-grade encoders quality-wise. Also, according to the
project’s homepage, this encoder may not be free of bugs as the code was written a long time ago and the
project was dead for at least 5 years.

This encoder only supports stereo and mono input. This is also CBR-only.

The original project (last updated in early 2007) is at |attp://sourceforge.net/projects/libshine-fxp/} We only
support the updated fork by the Savonet/Liquidsoap project at [https://github.com/savonet/shine]

Requires the presence of the libshine headers and library during configuration. You need to explicitly
configure the build with ——enable-1libshine.

See also[libmp3lame]
16.9.1 Optiond#]

The following options are supported by the libshine wrapper. The shineenc-equivalent of the options
are listed in parentheses.

b (-b)

http://sourceforge.net/projects/libshine-fxp/
https://github.com/savonet/shine

Set bitrate expressed in bits/s for CBR. shineenc —b option is expressed in kilobits/s.

16.10 libtwolamé#]
TwoLAME MP2 encoder wrapper.

Requires the presence of the libtwolame headers and library during configuration. You need to explicitly
configure the build with ——enable-libtwolame.

16.10.1 Optiong#|

The following options are supported by the libtwolame wrapper. The twolame-equivalent options follow
the FFmpeg ones and are in parentheses.

b (-b)

Set bitrate expressed in bits/s for CBR. twolame b option is expressed in kilobits/s. Default value is
128k.

a (-V)

Set quality for experimental VBR support. Maximum value range is from -50 to 50, useful range is
from -10 to 10. The higher the value, the better the quality. This option is valid only using the
f fmpeg command-line tool. For library interface users, use global_quality.

mode (——mode)
Set the mode of the resulting audio. Possible values:
‘auto’
Choose mode automatically based on the input. This is the default.
‘stereo’
Stereo
‘Joint_stereo’
Joint stereo
‘dual_channel’
Dual channel

‘mono’

Mono
psymodel (——-psyc-mode)

Set psychoacoustic model to use in encoding. The argument must be an integer between -1 and 4,
inclusive. The higher the value, the better the quality. The default value is 3.

energy_levels (——energy)

Enable energy levels extensions when set to 1. The default value is O (disabled).
error_protection (—-—-protect)

Enable CRC error protection when set to 1. The default value is 0 (disabled).
copyright (—-—-copyright)

Set MPEG audio copyright flag when set to 1. The default value is O (disabled).
original (--original)

Set MPEG audio original flag when set to 1. The default value is O (disabled).

16.11 libvo-amrwbend#[TO(C]

VisualOn Adaptive Multi-Rate Wideband encoder.

Requires the presence of the libvo-amrwbenc headers and library during configuration. You need to
explicitly configure the build with ——enable-libvo-amrwbenc --enable-version3.

This is a mono-only encoder. Officially it only supports 16000Hz sample rate, but you can override it by
setting strict to ‘unofficial’ or lower.

16.11.1 Optiong#[TOC

b

Set bitrate in bits/s. Only the following bitrates are supported, otherwise libavcodec will round to the
nearest valid bitrate.

‘6600’

‘8850’

‘12650’
‘14250’
‘15850’
‘18250’
‘19850’

‘23050’
‘23850’
dtx

Allow discontinuous transmission (generate comfort noise) when set to 1. The default value is 0
(disabled).

16.12 libvorbis#|TO(]

libvorbis encoder wrapper.

Requires the presence of the libvorbisenc headers and library during configuration. You need to explicitly
configure the build with ——enable-1libvorbis.

16.12.1 Options#j[TOC]

The following options are supported by the libvorbis wrapper. The oggenc-equivalent of the options are
listed in parentheses.

To get a more accurate and extensive documentation of the libvorbis options, consult the libvorbisenc’s
and oggenc’s documentations. See |http://xiph.org/vorbis/, |http://wiki.xiph.org/Vorbis-tools} and
oggenc(1).

b (-b)
Set bitrate expressed in bits/s for ABR. oggenc —b is expressed in kilobits/s.
a (-9

Set constant quality setting for VBR. The value should be a float number in the range of -1.0 to 10.0.
The higher the value, the better the quality. The default value is ‘3.0°.

This option is valid only using the £ fmpeg command-line tool. For library interface users, use
global_quality.

cutoff (--advanced-encode-option lowpass_frequency=N)

Set cutoff bandwidth in Hz, a value of 0 disables cutoff. oggenc’s related option is expressed in
kHz. The default value is ‘0’ (cutoff disabled).

minrate (-m)
Set minimum bitrate expressed in bits/s. oggenc —m is expressed in kilobits/s.
maxrate (—-M)

Set maximum bitrate expressed in bits/s. oggenc —M is expressed in kilobits/s. This only has effect
on ABR mode.

http://xiph.org/vorbis/
http://wiki.xiph.org/Vorbis-tools

iblock (-—-advanced-encode-option impulse_noisetune=N)

Set noise floor bias for impulse blocks. The value is a float number from -15.0 to 0.0. A negative bias
instructs the encoder to pay special attention to the crispness of transients in the encoded audio. The
tradeoff for better transient response is a higher bitrate.

16.13 libwavpack#[TOC]

A wrapper providing WavPack encoding through libwavpack.
Only lossless mode using 32-bit integer samples is supported currently.

Requires the presence of the libwavpack headers and library during configuration. You need to explicitly
configure the build with ——enable-libwavpack.

Note that a libavcodec-native encoder for the WavPack codec exists so users can encode audios with this

codec without using this encoder. See [wavpackend
16.13.1 Options#[TOC]
wavpack command line utility’s corresponding options are listed in parentheses, if any.
frame_size (——blocksize)
Default is 32768.
compression_level
Set speed vs. compression tradeoff. Acceptable arguments are listed below:
‘0 (-r)’°

Fast mode.

Normal (default) settings.

2 (-h)’
High quality.

‘3 (-hh)’
Very high quality.

‘4-8 (-hh -xEXTRAPROC)’

Same as ‘3’, but with extra processing enabled.

‘4’ is the same as —x2 and ‘8’ is the same as —x6.

16.14 mjpegHTO(C

Motion JPEG encoder.

16.14.1 Optiong#[TOC

huffman
Set the huffman encoding strategy. Possible values:
‘default’
Use the default huffman tables. This is the default strategy.
‘optimal’

Compute and use optimal huffman tables.

16.15 wavpack#TO(C]

WavPack lossless audio encoder.

This is a libavcodec-native WavPack encoder. There is also an encoder based on libwavpack, but there is
virtually no reason to use that encoder.

See also[libwavpack]
16.15.1 Options#|

The equivalent options for wavpack command line utility are listed in parentheses.

16.15.1.1 Shared options#TOC]

The following shared options are effective for this encoder. Only special notes about this particular
encoder will be documented here. For the general meaning of the options, see|the Codec Options chapter}

frame_size (——blocksize)

For this encoder, the range for this option is between 128 and 131072. Default is automatically
decided based on sample rate and number of channel.

For the complete formula of calculating default, see 1ibavcodec/wavpackenc.c.

compression_level (-f, —-h, -hh, and -Xx)

This option’s syntax is consistent with [libwavpack]'s.
16.15.1.2 Private optiond#]

joint_stereo (—3)
Set whether to enable joint stereo. Valid values are:
‘on (1)’
Force mid/side audio encoding.
‘off (0)°
Force left/right audio encoding.
‘auto’
Let the encoder decide automatically.
optimize_mono

Set whether to enable optimization for mono. This option is only effective for non-mono streams.
Available values:

13 o n b
enabled

‘of £’

disabled

17 Video Encoders#TOC

A description of some of the currently available video encoders follows.

17.1 Hap#[TO(

Vidvox Hap video encoder.

17.1.1 Optiond#]

format integer

Specifies the Hap format to encode.

hap
hap_alpha
hap_g

Default value is hap.
chunks integer

Specifies the number of chunks to split frames into, between 1 and 64. This permits multithreaded
decoding of large frames, potentially at the cost of data-rate. The encoder may modify this value to
divide frames evenly.

Default value is /.
compressor integer

Specifies the second-stage compressor to use. If set to none, chunks will be limited to 1, as
chunked uncompressed frames offer no benefit.

none
snappy

Default value is snappy.

17.2 jpeg2000H#TOC

The native jpeg 2000 encoder is lossy by default, the —g: v option can be used to set the encoding quality.
Lossless encoding can be selected with -pred 1.

17.2.1 Option§TO(]

format

Can be set to either j2k or jp2 (the default) that makes it possible to store non-rgb pix_fmts.

17.3 libkvazaarff{[TOC]

Kvazaar H.265/HEVC encoder.

Requires the presence of the libkvazaar headers and library during configuration. You need to explicitly
configure the build with ——enable-libkvazaar.

17.3.1 Option§fTOC]

b
Set target video bitrate in bit/s and enable rate control.
kvazaar—-params

Set kvazaar parameters as a list of name=value pairs separated by commas (,). See kvazaar
documentation for a list of options.

17.4 libopenh264#

Cisco libopenh264 H.264/MPEG-4 AVC encoder wrapper.

This encoder requires the presence of the libopenh264 headers and library during configuration. You need
to explicitly configure the build with ——enable-1ibopenh264. The library is detected using
pkg-config.

For more information about the library see http://www.openh264.org}

17.4.1 Optiongf|TOC

The following FFmpeg global options affect the configurations of the libopenh264 encoder.

b

Set the bitrate (as a number of bits per second).
g9

Set the GOP size.
maxrate

Set the max bitrate (as a number of bits per second).
flags +global_header

Set global header in the bitstream.
slices

Set the number of slices, used in parallelized encoding. Default value is 0. This is only used when
slice_modeissetto ‘fixed’.

slice_mode

http://www.openh264.org/

Set slice mode. Can assume one of the following possible values:
‘fixed’
a fixed number of slices
‘rowmb’
one slice per row of macroblocks
‘auto’
automatic number of slices according to number of threads
‘dyn
dynamic slicing
Default value is ‘auto’.
loopfilter
Enable loop filter, if set to 1 (automatically enabled). To disable set a value of 0.
profile

Set profile restrictions. If set to the value of ‘main’ enable CABAC (set the
SEncParamExt .iEntropyCodingModeFlag flag to 1).

max_nal_size
Set maximum NAL size in bytes.
allow_skip_frames

Allow skipping frames to hit the target bitrate if set to 1.

17.5 libtheora#]

libtheora Theora encoder wrapper.

Requires the presence of the libtheora headers and library during configuration. You need to explicitly
configure the build with ——enable-libtheora.

For more information about the libtheora project see |http://www.theora.org/l

http://www.theora.org/

17.5.1 Option§fTOC]

The following global options are mapped to internal libtheora options which affect the quality and the
bitrate of the encoded stream.

b
Set the video bitrate in bit/s for CBR (Constant Bit Rate) mode. In case VBR (Variable Bit Rate)
mode is enabled this option is ignored.

flags
Used to enable constant quality mode (VBR) encoding through the gscale flag, and to enable the
passl and pass2 modes.

g

Set the GOP size.
global_quality
Set the global quality as an integer in lambda units.

Only relevant when VBR mode is enabled with f1ags +gscale. The value is converted to QP
units by dividing it by FF_QP2LAMBDA, clipped in the [0 - 10] range, and then multiplied by 6.3 to
get a value in the native libtheora range [0-63]. A higher value corresponds to a higher quality.

Enable VBR mode when set to a non-negative value, and set constant quality value as a double
floating point value in QP units.

The value is clipped in the [0-10] range, and then multiplied by 6.3 to get a value in the native
libtheora range [0-63].

This option is valid only using the £ fmpeg command-line tool. For library interface users, use
global_quality.

17.5.2 Examples#]

® Set maximum constant quality (VBR) encoding with £ fmpeg:
ffmpeg —-i INPUT -codec:v libtheora —-g:v 10 OUTPUT.ogg
® Use ffmpeg to convert a CBR 1000 kbps Theora video stream:

ffmpeg —-i INPUT -codec:v libtheora -b:v 1000k OUTPUT.ogg

17.6 libvpx#[TO(

VP8/VP9 format supported through libvpx.

Requires the presence of the libvpx headers and library during configuration. You need to explicitly
configure the build with ——enable-1ibvpx.

17.6.1 Optiond#]

The following options are supported by the libvpx wrapper. The vpxenc-equivalent options or values are
listed in parentheses for easy migration.

To reduce the duplication of documentation, only the private options and some others requiring special
attention are documented here. For the documentation of the undocumented generic options, see
|Options chapter]

To get more documentation of the libvpx options, invoke the command ffmpeg -h
encoder=libvpx, ffmpeg -h encoder=1libvpx-vp9 or vpxenc —--help. Further
information is available in the libvpx API documentation.

b (target-bitrate)

Set bitrate in bits/s. Note that FFmpeg’s b option is expressed in bits/s, while vpxenc’s
target—-bitrate is in kilobits/s.

g (kf-max-dist)

keyint_min (kf-min-dist)

gmin (min-q)

amax (max-—q)

bufsize (buf-sz, buf-optimal-sz)

Set ratecontrol buffer size (in bits). Note vpxenc’s options are specified in milliseconds, the libvpx
wrapper converts this value as follows: buf-sz = bufsize * 1000 / bitrate,
buf-optimal-sz = bufsize * 1000 / bitrate * 5 / 6.

rc_init_occupancy (buf-initial-sz)

Set number of bits which should be loaded into the rc buffer before decoding starts. Note vpxenc’s
option is specified in milliseconds, the libvpx wrapper converts this value as follows:
rc_init_occupancy * 1000 / bitrate.

undershoot-pct
Set datarate undershoot (min) percentage of the target bitrate.

overshoot—-pct

Set datarate overshoot (max) percentage of the target bitrate.
skip_threshold (drop-frame)
qcomp (bias—pct)

maxrate (maxsection-pct)

Set GOP max bitrate in bits/s. Note vpxenc’s option is specified as a percentage of the target bitrate,
the libvpx wrapper converts this value as follows: (maxrate * 100 / bitrate).

minrate (minsection-pct)

Set GOP min bitrate in bits/s. Note vpxenc’s option is specified as a percentage of the target bitrate,
the libvpx wrapper converts this value as follows: (minrate * 100 / bitrate).

minrate, maxrate, b end-usage=cbhr
(minrate == maxrate == bitrate).
crf (end-usage=cq, cg-level)
tune (tune)
‘psnr (psnr)’
‘ssim (ssim)’
quality, deadline (deadline)
‘best’

Use best quality deadline. Poorly named and quite slow, this option should be avoided as it may
give worse quality output than good.

‘good’

Use good quality deadline. This is a good trade-off between speed and quality when used with
the cpu—used option.

‘realtime’
Use realtime quality deadline.
speed, cpu-used (cpu-used)
Set quality/speed ratio modifier. Higher values speed up the encode at the cost of quality.

nr (noise-sensitivity)
static-thresh

Set a change threshold on blocks below which they will be skipped by the encoder.

slices (token-parts)

Note that FFmpeg’s s1ices option gives the total number of partitions, while vpxenc’s
token-partsis given as log2 (partitions).

max—-intra-rate

Set maximum I-frame bitrate as a percentage of the target bitrate. A value of 0 means unlimited.
force_key_frames

VPX_EFLAG_FORCE_KF

Alternate reference frame related
auto—-alt-ref

Enable use of alternate reference frames (2-pass only).
arnr-max—frames

Set altref noise reduction max frame count.
arnr—-type

Set altref noise reduction filter type: backward, forward, centered.
arnr-strength

Set altref noise reduction filter strength.
rc—lookahead, lag-in-frames (lag-in-frames)

Set number of frames to look ahead for frametype and ratecontrol.

error-resilient

Enable error resiliency features.

VP9-specific options
lossless

Enable lossless mode.
tile—columns

Set number of tile columns to use. Note this is given as 1og2 (tile_columns). For
example, 8 tile columns would be requested by setting the t i1le—columns option to 3.

tile-rows

Set number of tile rows to use. Note this is given as Log2 (tile_rows). For example, 4 tile
rows would be requested by setting the t i le—rows option to 2.

frame-parallel
Enable frame parallel decodability features.
ag-mode

Set adaptive quantization mode (0: off (default), 1: variance 2: complexity, 3: cyclic refresh, 4:
equator360).

colorspace color—-space
Set input color space. The VP9 bitstream supports signaling the following colorspaces:

‘rgb’ sRGB
‘bt709" bt709
‘unspecified’ unknown
‘bt470bg’ bt601
‘smptel70m’ smptel70
‘smpte240m’ smpte240
‘bt2020_ncl’ bt2020
row—-mt boolean

Enable row based multi-threading.

For more information about libvpx see: [http://www.webmproject.org/|

17.7 libwebpH#[TOC

libwebp WebP Image encoder wrapper

libwebp is Google’s official encoder for WebP images. It can encode in either lossy or lossless mode.
Lossy images are essentially a wrapper around a VP8 frame. Lossless images are a separate codec
developed by Google.

17.7.1 Pixel Format#|

Currently, libwebp only supports YUV420 for lossy and RGB for lossless due to limitations of the format
and libwebp. Alpha is supported for either mode. Because of API limitations, if RGB is passed in when
encoding lossy or YUV is passed in for encoding lossless, the pixel format will automatically be converted
using functions from libwebp. This is not ideal and is done only for convenience.

http://www.webmproject.org/

17.7.2 OptiongfTOC]

—lossless boolean
Enables/Disables use of lossless mode. Default is O.
—compression_level integer

For lossy, this is a quality/speed tradeoff. Higher values give better quality for a given size at the cost
of increased encoding time. For lossless, this is a size/speed tradeoff. Higher values give smaller size
at the cost of increased encoding time. More specifically, it controls the number of extra algorithms
and compression tools used, and varies the combination of these tools. This maps to the method
option in libwebp. The valid range is 0 to 6. Default is 4.

—gscale float

For lossy encoding, this controls image quality, O to 100. For lossless encoding, this controls the
effort and time spent at compressing more. The default value is 75. Note that for usage via
libavcodec, this option is called global_quality and must be multiplied by FF_QP2LAMBDA.

—-preset type
Configuration preset. This does some automatic settings based on the general type of the image.
none
Do not use a preset.
default
Use the encoder default.
picture
Digital picture, like portrait, inner shot
photo
Outdoor photograph, with natural lighting
drawing
Hand or line drawing, with high-contrast details
icon

Small-sized colorful images

text

Text-like

17.8 libx264, libx264rghi#
x264 H.264/MPEG-4 AVC encoder wrapper.

This encoder requires the presence of the 1ibx264 headers and library during configuration. You need to
explicitly configure the build with ——enable-1ibx264.

libx264 supports an impressive number of features, including 8x8 and 4x4 adaptive spatial transform,
adaptive B-frame placement, CAVLC/CABAC entropy coding, interlacing (MBAFF), lossless mode, psy
optimizations for detail retention (adaptive quantization, psy-RD, psy-trellis).

Many libx264 encoder options are mapped to FFmpeg global codec options, while unique encoder options
are provided through private options. Additionally the x2640opts and x264—params private options
allows one to pass a list of key=value tuples as accepted by the libx264 x264_param_parse function.

The x264 project website is at |http:/www.videolan.org/developers/x264.html|

The libx264rgb encoder is the same as 1ibx264, except it accepts packed RGB pixel formats as input
instead of YUV.

17.8.1 Supported Pixel Formats#]

x264 supports 8- to 10-bit color spaces. The exact bit depth is controlled at x264’s configure time.
FFmpeg only supports one bit depth in one particular build. In other words, it is not possible to build one
FFmpeg with multiple versions of x264 with different bit depths.

17.8.2 OptiongTO(]

The following options are supported by the libx264 wrapper. The x2 64-equivalent options or values are
listed in parentheses for easy migration.

To reduce the duplication of documentation, only the private options and some others requiring special
attention are documented here. For the documentation of the undocumented generic options, see
|Options chapten]

To get a more accurate and extensive documentation of the libx264 options, invoke the command x2 64
——fullhelp or consult the libx264 documentation.

b (bitrate)

Set bitrate in bits/s. Note that FFmpeg’s o option is expressed in bits/s, while x264’s bitrate isin
kilobits/s.

http://www.videolan.org/developers/x264.html

bf (bframes)
g (keyint)
gmin (gpmin)

Minimum quantizer scale.
gmax (gpmax)
Maximum quantizer scale.
qdiff (gpstep)
Maximum difference between quantizer scales.
gblur (gblur)
Quantizer curve blur
gcomp (gcomp)
Quantizer curve compression factor
refs (ref)
Number of reference frames each P-frame can use. The range is from 0-16.
sc_threshold (scenecut)
Sets the threshold for the scene change detection.
trellis (trellis)
Performs Trellis quantization to increase efficiency. Enabled by default.

nr (nr)
me_range (merange)

Maximum range of the motion search in pixels.
me_method (me)
Set motion estimation method. Possible values in the decreasing order of speed:

‘dia (dia)’
‘epzs (dia)’

Diamond search with radius 1 (fastest). ‘epzs’ is an alias for ‘dia’.

‘hex (hex)’
Hexagonal search with radius 2.
‘umh (umh)’
Uneven multi-hexagon search.
‘esa (esa)’
Exhaustive search.
‘tesa (tesa)’
Hadamard exhaustive search (slowest).
forced-idr

Normally, when forcing a I-frame type, the encoder can select any type of I-frame. This option forces
it to choose an IDR-frame.

subqg (subme)
Sub-pixel motion estimation method.
b_strategy (b—-adapt)
Adaptive B-frame placement decision algorithm. Use only on first-pass.
keyint_min (min-keyint)
Minimum GOP size.
coder
Set entropy encoder. Possible values:
‘ac’

Enable CABAC.

3 ’

vic

Enable CAVLC and disable CABAC. It generates the same effect as x264’s ——no-cabac
option.

cmp

Set full pixel motion estimation comparison algorithm. Possible values:
‘chroma’
Enable chroma in motion estimation.

sad’

Ignore chroma in motion estimation. It generates the same effect as x264’s
——no—-chroma-me option.

threads (threads)
Number of encoding threads.
thread_type
Set multithreading technique. Possible values:
‘slice’

Slice-based multithreading. It generates the same effect as x264’s ——sliced-threads
option.

‘frame’
Frame-based multithreading.
flags

Set encoding flags. It can be used to disable closed GOP and enable open GOP by setting it to
—cgop. The result is similar to the behavior of x264’s ——open-gop option.

rc_init_occupancy (vbv-init)
preset (preset)

Set the encoding preset.
tune (tune)

Set tuning of the encoding params.
profile (profile)

Set profile restrictions.

fastfirstpass

Enable fast settings when encoding first pass, when set to 1. When set to 0, it has the same effect of
x264’s ——slow—firstpass option.

crf (crf)
Set the quality for constant quality mode.
crf_max (crf—-max)
In CRF mode, prevents VBV from lowering quality beyond this point.
aqp (gp)
Set constant quantization rate control method parameter.
ag-mode (ag—mode)
Set AQ method. Possible values:
‘none (0)’
Disabled.
‘variance (1)’
Variance AQ (complexity mask).
‘autovariance (2)’
Auto-variance AQ (experimental).
ag-strength (ag-strength)
Set AQ strength, reduce blocking and blurring in flat and textured areas.
psy

Use psychovisual optimizations when set to 1. When set to 0, it has the same effect as x264’s
——no-psy option.

psy-rd (psy-—rd)
Set strength of psychovisual optimization, in psy-rd:psy-trellis format.
rc—lookahead (rc—-lookahead)

Set number of frames to look ahead for frametype and ratecontrol.

weightb

Enable weighted prediction for B-frames when set to 1. When set to 0, it has the same effect as
x264’s ——no-weightb option.

weightp (weightp)
Set weighted prediction method for P-frames. Possible values:
‘none (0)’
Disabled
‘simple (1)’
Enable only weighted refs
‘smart (2)°
Enable both weighted refs and duplicates
ssim (ssim)
Enable calculation and printing SSIM stats after the encoding.
intra-refresh (intra-refresh)
Enable the use of Periodic Intra Refresh instead of IDR frames when set to 1.
avcintra—-class (class)
Configure the encoder to generate AVC-Intra. Valid values are 50,100 and 200
bluray-compat (bluray-compat)

Configure the encoder to be compatible with the bluray standard. It is a shorthand for setting
"bluray-compat=1 force-cfr=1".

b-bias (b-bias)
Set the influence on how often B-frames are used.
b-pyramid (b-pyramid)
Set method for keeping of some B-frames as references. Possible values:

‘none (none)’

Disabled.
‘strict (strict)’
Strictly hierarchical pyramid.
‘normal (normal)’
Non-strict (not Blu-ray compatible).
mixed-refs

Enable the use of one reference per partition, as opposed to one reference per macroblock when set to
1. When set to 0, it has the same effect as x264’s ——no—-mixed-refs option.

8x8dct

Enable adaptive spatial transform (high profile 8x8 transform) when set to 1. When set to 0, it has the
same effect as x264’s ——no—-8x8dct option.

fast-pskip

Enable early SKIP detection on P-frames when set to 1. When set to 0, it has the same effect as
x264’s ——no—-fast-pskip option.

aud (aud)
Enable use of access unit delimiters when set to 1.
mbtree

Enable use macroblock tree ratecontrol when set to 1. When set to 0, it has the same effect as x264°’s
—-—-no-mbtree option.

deblock (deblock)
Set loop filter parameters, in alpha:beta form.
cplxblur (cplxblur)
Set fluctuations reduction in QP (before curve compression).
partitions (partitions)
Set partitions to consider as a comma-separated list of. Possible values in the list:

‘P8x8’

8x8 P-frame partition.
‘pdx4’

4x4 P-frame partition.
‘b8x8’

4x4 B-frame partition.
‘18x8’

8x8 I-frame partition.
‘14x4’

4x4 I-frame partition. (Enabling ‘p4x4’ requires ‘p8x8’ to be enabled. Enabling ‘18x8’
requires adaptive spatial transform (8 x8dct option) to be enabled.)

‘none (none)’

Do not consider any partitions.
‘all (all)’

Consider every partition.

direct-pred (direct)

Set direct MV prediction mode. Possible values:
‘none (none)’

Disable MV prediction.
‘spatial (spatial)’

Enable spatial predicting.
‘temporal (temporal)’

Enable temporal predicting.
‘auto (auto)’

Automatically decided.

slice—max—size (slice—-max—-size)

Set the limit of the size of each slice in bytes. If not specified but RTP payload size (ps) is specified,
that is used.

stats (stats)
Set the file name for multi-pass stats.
nal-hrd (nal-hrd)
Set signal HRD information (requires vbv-bufsize to be set). Possible values:
‘none (none)’
Disable HRD information signaling.
‘vbr (vbr)’
Variable bit rate.
‘cbr (cbr)’
Constant bit rate (not allowed in MP4 container).
x2640pts (N.A.)
Set any x264 option, see x264 ——fullhelp for a list.

"non

Argument is a list of key=value couples separated by ":". In filter and psy-rd options that use ":" as a
separator themselves, use "," instead. They accept it as well since long ago but this is kept
undocumented for some reason.

For example to specify libx264 encoding options with f fmpeg:
ffmpeg —-i foo.mpg -c:v 1ibx264 -x264opts keyint=123:min-keyint=20 -an out.mkv
a53cc boolean

Import closed captions (which must be ATSC compatible format) into output. Only the mpeg2 and
h264 decoders provide these. Default is 1 (on).

x264-params (N.A.)
Override the x264 configuration using a :-separated list of key=value parameters.

This option is functionally the same as the x264opt s, but is duplicated for compatibility with the
Libav fork.

For example to specify libx264 encoding options with £ fmpeg:

ffmpeg -1 INPUT -c:v 1ibx264 -x264-params level=30:bframes=0:weightp=0:\
cabac=0:ref=1:vbv-maxrate=768:vbv-bufsize=2000:analyse=all:me=umh:\
no-fast-pskip=1:subg=6:8x8dct=0:trellis=0 OUTPUT

Encoding ffpresets for common usages are provided so they can be used with the general presets system
(e.g. passing the pre option).

17.9 libx265#[TOC

x265 H.265/HEVC encoder wrapper.

This encoder requires the presence of the libx265 headers and library during configuration. You need to
explicitly configure the build with ——enable-1ibx265.

17.9.1 OptiongTO(]

preset

Set the x265 preset.
tune

Set the X265 tune parameter.
forced-idr

Normally, when forcing a I-frame type, the encoder can select any type of I-frame. This option forces
it to choose an IDR-frame.

x265-params

Set x265 options using a list of key=value couples separated by ":". See x265 —-help for a list of
options.

For example to specify libx265 encoding options with —x265-params:

ffmpeg —-i input -c:v 1ibx265 —-x265-params crf=26:psy-rd=1 output.mp4

17.10 libxvid#TO(C|

Xvid MPEG-4 Part 2 encoder wrapper.

This encoder requires the presence of the libxvidcore headers and library during configuration. You need
to explicitly configure the build with ——enable-1ibxvid —--enable-gpl.

The native mpeg4 encoder supports the MPEG-4 Part 2 format, so users can encode to this format without
this library.

17.10.1 Options#[TOC]

The following options are supported by the libxvid wrapper. Some of the following options are listed but
are not documented, and correspond to shared codec options. See|the Codec Options chapter] for their
documentation. The other shared options which are not listed have no effect for the libxvid encoder.

b

g

gmin

gmax
mpeg_quant
threads

bf
b_gfactor
b_goffset
flags

Set specific encoding flags. Possible values:

3 2

mv4
Use four motion vector by macroblock.
‘aic’
Enable high quality AC prediction.
‘gray’
Only encode grayscale.
‘gmc’
Enable the use of global motion compensation (GMC).
‘gpel’
Enable quarter-pixel motion compensation.
‘cgop’
Enable closed GOP.

‘global_header’

Place global headers in extradata instead of every keyframe.

trellis
me_method

Set motion estimation method. Possible values in decreasing order of speed and increasing order of
quality:

‘zero’

Use no motion estimation (default).
‘phods’
[3 X l b
‘log

Enable advanced diamond zonal search for 16x16 blocks and half-pixel refinement for 16x16
blocks. ‘x1’ and ‘1og’ are aliases for ‘phods’.

‘epzs’

Enable all of the things described above, plus advanced diamond zonal search for 8x8 blocks,
half-pixel refinement for 8x8 blocks, and motion estimation on chroma planes.

‘full’

Enable all of the things described above, plus extended 16x16 and 8x8 blocks search.

mbd

Set macroblock decision algorithm. Possible values in the increasing order of quality:
‘simple’

Use macroblock comparing function algorithm (default).
‘bits’

Enable rate distortion-based half pixel and quarter pixel refinement for 16x16 blocks.
g

Enable all of the things described above, plus rate distortion-based half pixel and quarter pixel
refinement for 8x8 blocks, and rate distortion-based search using square pattern.

lumi_aqg
Enable lumi masking adaptive quantization when set to 1. Default is O (disabled).

variance_aq

Enable variance adaptive quantization when set to 1. Default is O (disabled).

When combined with 1umi_ aq, the resulting quality will not be better than any of the two specified
individually. In other words, the resulting quality will be the worse one of the two effects.

ssim
Set structural similarity (SSIM) displaying method. Possible values:
‘of £’
Disable displaying of SSIM information.

avg

Output average SSIM at the end of encoding to stdout. The format of showing the average SSIM
is:

Average SSIM: %f
For users who are not familiar with C, %f means a float number, or a decimal (e.g. 0.939232).
‘frame’

Output both per-frame SSIM data during encoding and average SSIM at the end of encoding to
stdout. The format of per-frame information is:

SSIM: avg: %1.3f min: %1.3f max: %$1.3f

For users who are not familiar with C, %1.3f means a float number rounded to 3 digits after the
dot (e.g. 0.932).

ssim_acc

Set SSIM accuracy. Valid options are integers within the range of 0-4, while 0 gives the most
accurate result and 4 computes the fastest.

17.11 mpeg2#TOC]

MPEG-2 video encoder.

17.11.1 Options#j[TOC]

seq_disp_ext integer
Specifies if the encoder should write a sequence_display_extension to the output.

-1

auto

Decide automatically to write it or not (this is the default) by checking if the data to be written is
different from the default or unspecified values.

0
never

Never write it.

1
always

Always write it.

17.12 png#

PNG image encoder.

17.12.1 Private options#iTOC]
dpi integer

Set physical density of pixels, in dots per inch, unset by default
dpm integer

Set physical density of pixels, in dots per meter, unset by default

17.13 ProRes#]

Apple ProRes encoder.

FFmpeg contains 2 ProRes encoders, the prores-aw and prores-ks encoder. The used encoder can be
chosen with the —vcodec option.

17.13.1 Private Options for prores-k§fTOC

profile integer
Select the ProRes profile to encode

‘proxy’
g
‘standard’
‘ha'

‘4444

‘4444xq’°
quant_mat integer

Select quantization matrix.

‘auto’

‘default’

‘proxy’

Qe

‘standard’

‘ha'

If set to auto, the matrix matching the profile will be picked. If not set, the matrix providing the
highest quality, default, will be picked.

bits_per_mb integer

How many bits to allot for coding one macroblock. Different profiles use between 200 and 2400 bits
per macroblock, the maximum is 8000.

mbs_per_slice integer

Number of macroblocks in each slice (1-8); the default value (8) should be good in almost all
situations.

vendor string

Override the 4-byte vendor ID. A custom vendor ID like apl0 would claim the stream was produced
by the Apple encoder.

alpha_bits integer

Specify number of bits for alpha component. Possible values are 0, § and /6. Use 0 to disable alpha
plane coding.

17.13.2 Speed considerations#]

In the default mode of operation the encoder has to honor frame constraints (i.e. not produce frames with
size bigger than requested) while still making output picture as good as possible. A frame containing a lot
of small details is harder to compress and the encoder would spend more time searching for appropriate
quantizers for each slice.

Setting a higher bits_per_mb limit will improve the speed.

For the fastest encoding speed set the gscale parameter (4 is the recommended value) and do not set a
size constraint.

17.14 QSV encoders#

The family of Intel QuickSync Video encoders (MPEG-2, H.264 and HEVC)
The ratecontrol method is selected as follows:

® When global_gquality is specified, a quality-based mode is used. Specifically this means either
O - CQP - constant quantizer scale, when the gscale codec flag is also set (the —gscale
ffmpeg option).
O - LA_ICQ - intelligent constant quality with lookahead, when the Look_ahead option is also
set.
O - ICQ - intelligent constant quality otherwise.
® Otherwise, a bitrate-based mode is used. For all of those, you should specify at least the desired
average bitrate with the b option.
O - LA - VBR with lookahead, when the 1ook_ahead option is specified.
- VCM - video conferencing mode, when the vcm option is set.
- CBR - constant bitrate, when maxrate is specified and equal to the average bitrate.
- VBR - variable bitrate, when maxrate is specified, but is higher than the average bitrate.
- AVBR - average VBR mode, when maxrate is not specified. This mode is further configured
by the avbr_accuracy and avbr_convergence options.

O
O
O
O

Note that depending on your system, a different mode than the one you specified may be selected by the
encoder. Set the verbosity level to verbose or higher to see the actual settings used by the QSV runtime.

Additional libavcodec global options are mapped to MSDK options as follows:

g/gop_size -> GopPicSize

bf/max_b_frames+]1 -> GopRefDist
rc_init_occupancy/rc_initial_buffer_occupancy-> InitialDelayInKB
slices ->NumSlice

refs -> NumRefFrame

b_strategy/b_frame_strategy ->BRefType

cgop/CLOSED_GOP codec flag -> GopOptFlag

For the COP mode, the i_gfactor/i_qgoffset and b_gfactor/b_goffset set the
difference between QPP and QPI, and QPP and QPB respectively.

Setting the coder option to the value vic will make the H.264 encoder use CAVLC instead of
CABAC.

17.15 snow#
17.15.1 Options#j[TOC]

iterative_dia_size

dia size for the iterative motion estimation

17.16 VAAPI encoders#]

Wrappers for hardware encoders accessible via VAAPL

These encoders only accept input in VAAPI hardware surfaces. If you have input in software frames, use
the hwupload filter to upload them to the GPU.

The following standard libavcodec options are used:

g/ gop_size

bf/max_b_frames

profile

level

b/bit_rate

maxrate/rc_max_rate

bufsize/rc_buffer size
rc_init_occupancy/rc_initial_ buffer_occupancy

compression_level

Speed / quality tradeoff: higher values are faster / worse quality.
® g/global_quality

Size / quality tradeoff: higher values are smaller / worse quality.

gmin (only: gmax is not supported)
i_gfactor/i_qguant_factor
i_goffset/i_qgquant_offset
b_gfactor/b_quant_factor
b_goffset /b_quant_offset

h264_vaapi

profile sets the value of profile_idc and the constraint_set*_flags. 1evel sets the value of
level _idc.

low_power
Use low-power encoding mode.
coder

Set entropy encoder (default is cabac). Possible values:

3)

ac
‘cabac’

Use CABAC.

‘vic’
‘cavlc’

Use CAVLC.
hevc_vaapi
profile and level set the values of general_profile_idc and general_level_idc respectively.
mijpeg_vaapi

Always encodes using the standard quantisation and huffman tables - global_quality scales the
standard quantisation table (range 1-100).

mpeg2_vaapi
profile and level set the value of profile_and_level_indication.
No rate control is supported.
vp8_vaapi
B-frames are not supported.
global_qguality sets the g_idx used for non-key frames (range 0-127).

loop_filter level
loop_filter_sharpness

Manually set the loop filter parameters.
vp9_vaapi
global_qguality sets the g_idx used for P-frames (range 0-255).

loop_filter_ level
loop_filter_ sharpness

Manually set the loop filter parameters.

B-frames are supported, but the output stream is always in encode order rather than display order. If
B-frames are enabled, it may be necessary to use the vp9_raw_reorder bitstream filter to modify
the output stream to display frames in the correct order.

Only normal frames are produced - the vp9_superframe bitstream filter may be required to
produce a stream usable with all decoders.

17.17 ve2ZHTO(

SMPTE VC-2 (previously BBC Dirac Pro). This codec was primarily aimed at professional broadcasting
but since it supports yuv420, yuv422 and yuv444 at 8 (limited range or full range), 10 or 12 bits, this
makes it suitable for other tasks which require low overhead and low compression (like screen recording).

17.17.1 Optiong#[TOC
b

Sets target video bitrate. Usually that’s around 1:6 of the uncompressed video bitrate (e.g. for
1920x1080 50fps yuv422p10 that’s around 400Mbps). Higher values (close to the uncompressed
bitrate) turn on lossless compression mode.

field_order

Enables field coding when set (e.g. to tt - top field first) for interlaced inputs. Should increase
compression with interlaced content as it splits the fields and encodes each separately.

wavelet_depth

Sets the total amount of wavelet transforms to apply, between 1 and 5 (default). Lower values reduce
compression and quality. Less capable decoders may not be able to handle values of
wavelet_depth over 3.

wavelet_type

Sets the transform type. Currently only 5_3 (LeGall) and 9_7 (Deslauriers-Dubuc) are implemented,
with 9_7 being the one with better compression and thus is the default.

slice_width
slice_height

Sets the slice size for each slice. Larger values result in better compression. For compatibility with
other more limited decoders use slice_width of 32 and slice_height of 8.

tolerance

Sets the undershoot tolerance of the rate control system in percent. This is to prevent an expensive
search from being run.

am

Sets the quantization matrix preset to use by default or when wavelet_depthissetto 5

® - default Uses the default quantization matrix from the specifications, extended with values for
the fifth level. This provides a good balance between keeping detail and omitting artifacts.

® - flat Use a completely zeroed out quantization matrix. This increases PSNR but might reduce
perception. Use in bogus benchmarks.

® - color Reduces detail but attempts to preserve color at extremely low bitrates.

18 Subtitles Encoders#[TOC
18.1 dvdsub#{TO(C

This codec encodes the bitmap subtitle format that is used in DVDs. Typically they are stored in
VOBSUEB file pairs (*.idx + *.sub), and they can also be used in Matroska files.

18.1.1 Optiond#

even_rows_fix

When set to 1, enable a work-around that makes the number of pixel rows even in all subtitles. This
fixes a problem with some players that cut off the bottom row if the number is odd. The work-around
just adds a fully transparent row if needed. The overhead is low, typically one byte per subtitle on
average.

By default, this work-around is disabled.

19 Bitstream Filters#|[TOC

When you configure your FFmpeg build, all the supported bitstream filters are enabled by default. You
can list all available ones using the configure option ——1ist-bsfs.

You can disable all the bitstream filters using the configure option ——disable-bsfs, and selectively
enable any bitstream filter using the option ——enable-bsf=BSF, or you can disable a particular
bitstream filter using the option ——disable-bsf=BSF.

The option —bsfs of the ff* tools will display the list of all the supported bitstream filters included in
your build.

The ff* tools have a -bsf option applied per stream, taking a comma-separated list of filters, whose
parameters follow the filter name after a ’=’.

ffmpeg —-i INPUT -c:v copy -bsf:v filterl[=optl=strl:opt2=str2][,filter2] OUTPUT

Below is a description of the currently available bitstream filters, with their parameters, if any.

19.1 aac_adtstoasd#]

Convert MPEG-2/4 AAC ADTS to an MPEG-4 Audio Specific Configuration bitstream.

This filter creates an MPEG-4 AudioSpecificConfig from an MPEG-2/4 ADTS header and removes the
ADTS header.

This filter is required for example when copying an AAC stream from a raw ADTS AAC or an MPEG-TS
container to MP4A-LATM, to an FLV file, or to MOV/MP4 files and related formats such as 3GP or
M4A. Please note that it is auto-inserted for MP4A-LATM and MOV/MP4 and related formats.

19.2 chomp#[TO(

Remove zero padding at the end of a packet.

19.3 dca_core]

Extract the core from a DCA/DTS stream, dropping extensions such as DTS-HD.

19.4 dump_extra#]

Add extradata to the beginning of the filtered packets.

The additional argument specifies which packets should be filtered. It accepts the values:

[l

a

add extradata to all key packets, but only if local_header is set in the £1ags2 codec context field
K%

add extradata to all key packets
‘e’

add extradata to all packets
If not specified it is assumed ‘k’.

For example the following f fmpeg command forces a global header (thus disabling individual packet
headers) in the H.264 packets generated by the 11bx264 encoder, but corrects them by adding the header
stored in extradata to the key packets:

ffmpeg —-i INPUT -map 0 -flags:v +global_header -c:v 1libx264 -bsf:v dump_extra out.ts

19.5 extract_extradatalf]

Extract the in-band extradata.

Certain codecs allow the long-term headers (e.g. MPEG-2 sequence headers, or H.264/HEVC
(VPS/)SPS/PPS) to be transmitted either "in-band" (i.e. as a part of the bitstream containing the coded
frames) or "out of band" (e.g. on the container level). This latter form is called "extradata" in FFmpeg
terminology.

This bitstream filter detects the in-band headers and makes them available as extradata.
remove

When this option is enabled, the long-term headers are removed from the bitstream after extraction.

19.6 h264_mp4toannexb]

Convert an H.264 bitstream from length prefixed mode to start code prefixed mode (as defined in the
Annex B of the ITU-T H.264 specification).

This is required by some streaming formats, typically the MPEG-2 transport stream format (muxer
mpegts).

For example to remux an MP4 file containing an H.264 stream to mpegts format with £ fmpeg, you can
use the command:

ffmpeg -1 INPUT.mp4 -codec copy -bsf:v h264_mp4toannexb OUTPUT.ts

Please note that this filter is auto-inserted for MPEG-TS (muxer mpegt s) and raw H.264 (muxer h264)
output formats.

19.7 heve_mp4toannexh#]

Convert an HEVC/H.265 bitstream from length prefixed mode to start code prefixed mode (as defined in
the Annex B of the ITU-T H.265 specification).

This is required by some streaming formats, typically the MPEG-2 transport stream format (muxer
mpegts).

For example to remux an MP4 file containing an HEVC stream to mpegts format with £ fmpeg, you can
use the command:

ffmpeg -1 INPUT.mp4 -codec copy -bsf:v hevc_mp4toannexb OUTPUT.ts

Please note that this filter is auto-inserted for MPEG-TS (muxer mpegt s) and raw HEVC/H.265 (muxer
h265 or hevc) output formats.

19.8 imxdump#[TO(

Modifies the bitstream to fit in MOV and to be usable by the Final Cut Pro decoder. This filter only
applies to the mpeg2video codec, and is likely not needed for Final Cut Pro 7 and newer with the
appropriate —tag:v.

For example, to remux 30 MB/sec NTSC IMX to MOV:

ffmpeg -i input.mxf -c copy -bsf:v imxdump -tag:v mx3n output.mov

19.9 mjpeg2jpegH
Convert MJPEG/AVI1 packets to full JPEG/JFIF packets.

MIJPEG is a video codec wherein each video frame is essentially a JPEG image. The individual frames can
be extracted without loss, e.g. by

ffmpeg -i ../some_mjpeg.avi —-c:v copy frames_%d.jpg

Unfortunately, these chunks are incomplete JPEG images, because they lack the DHT segment required
for decoding. Quoting from |http://www.digitalpreservation.gov/formats/fdd/fdd000063.shtmlf

Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at least the
MIJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed — and *omitted* — Huffman
table. The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must use basic Huffman encoding, not
arithmetic or progressive. . . . You can indeed extract the MJPEG frames and decode them with a regular
JPEG decoder, but you have to prepend the DHT segment to them, or else the decoder won’t have any
idea how to decompress the data. The exact table necessary is given in the OpenDML spec."

This bitstream filter patches the header of frames extracted from an MJPEG stream (carrying the AVI1
header ID and lacking a DHT segment) to produce fully qualified JPEG images.

ffmpeg -i mjpeg-movie.avi -c:v copy -bsf:v mjpeg2jpeg frame_%d.jpg

exiftran -i -9 frame*.jpg
ffmpeg -i frame_%d.Jjpg -c:v copy rotated.avi

19.10 mjpegadumpi#

Add an MJPEG A header to the bitstream, to enable decoding by Quicktime.

19.11 mov2textsubff]

Extract a representable text file from MOV subtitles, stripping the metadata header from each subtitle
packet.

See also the filter.

http://www.digitalpreservation.gov/formats/fdd/fdd000063.shtml

19.12 mp3decomp#|[TO(]

Decompress non-standard compressed MP3 audio headers.

19.13 mpeg4_unpack_bframes#

Unpack DivX-style packed B-frames.

DivX-style packed B-frames are not valid MPEG-4 and were only a workaround for the broken Video for
Windows subsystem. They use more space, can cause minor AV sync issues, require more CPU power to
decode (unless the player has some decoded picture queue to compensate the 2,0,2,0 frame per packet
style) and cause trouble if copied into a standard container like mp4 or mpeg-ps/ts, because MPEG-4
decoders may not be able to decode them, since they are not valid MPEG-4.

For example to fix an AVI file containing an MPEG-4 stream with DivX-style packed B-frames using
f fmpeg, you can use the command:

ffmpeg —-i INPUT.avi —-codec copy -bsf:v mpeg4_unpack_bframes OUTPUT.avi

19.14 noisef]

Damages the contents of packets or simply drops them without damaging the container. Can be used for
fuzzing or testing error resilience/concealment.

Parameters:
amount

A numeral string, whose value is related to how often output bytes will be modified. Therefore,
values below or equal to 0 are forbidden, and the lower the more frequent bytes will be modified,
with 1 meaning every byte is modified.

dropamount

A numeral string, whose value is related to how often packets will be dropped. Therefore, values
below or equal to 0 are forbidden, and the lower the more frequent packets will be dropped, with 1
meaning every packet is dropped.

The following example applies the modification to every byte but does not drop any packets.

ffmpeg —-i INPUT -c copy -bsf noise[=1] output.mkv

19.15 nulTOCQ

This bitstream filter passes the packets through unchanged.

19.16 remove_extralf]

Remove extradata from packets.
It accepts the following parameter:
freg
Set which frame types to remove extradata from.
K
Remove extradata from non-keyframes only.
‘keyframe’
Remove extradata from keyframes only.
‘e, all’

Remove extradata from all frames.

19.17 text2movsub#[TO(

Convert text subtitles to MOV subtitles (as used by the mov_text codec) with metadata headers.

See also the filter.
19.18 vp9_superframef]

Merge VP9 invisible (alt-ref) frames back into VP9 superframes. This fixes merging of split/segmented
VP9 streams where the alt-ref frame was split from its visible counterpart.

19.19 vp9_superframe_split#

Split VP9 superframes into single frames.

19.20 vp9_raw_reorder#]

Given a VP9 stream with correct timestamps but possibly out of order, insert additional
show-existing-frame packets to correct the ordering.

20 Format Options#iTOC

The libavformat library provides some generic global options, which can be set on all the muxers and
demuxers. In addition each muxer or demuxer may support so-called private options, which are specific
for that component.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
the AVFormatContext options or using the 1ibavutil/opt .h API for programmatic use.

The list of supported options follows:
avioflags flags (input/output)
Possible values:
‘direct’
Reduce buffering.
probesize integer (input)

Set probing size in bytes, i.e. the size of the data to analyze to get stream information. A higher value
will enable detecting more information in case it is dispersed into the stream, but will increase
latency. Must be an integer not lesser than 32. It is 5000000 by default.

packetsize integer (output)
Set packet size.
fflags flags (input/output)
Set format flags.
Possible values:
‘ignidx’
Ignore index.
‘fastseek’
Enable fast, but inaccurate seeks for some formats.
‘genpts’
Generate PTS.
‘nofillin’
Do not fill in missing values that can be exactly calculated.
‘noparse’

Disable AVParsers, this needs +nofillin too.

‘igndts’

Ignore DTS.
‘discardcorrupt’

Discard corrupted frames.
‘sortdts’

Try to interleave output packets by DTS.
‘keepside’

Do not merge side data.
‘latm’

Enable RTP MP4A-LATM payload.
‘nobuffer’

Reduce the latency introduced by optional buffering
‘bitexact’

Only write platform-, build- and time-independent data. This ensures that file and data
checksums are reproducible and match between platforms. Its primary use is for regression
testing.

‘shortest’

Stop muxing at the end of the shortest stream. It may be needed to increase
max_interleave_delta to avoid flushing the longer streams before EOF.

seek2any integer (input)
Allow seeking to non-keyframes on demuxer level when supported if set to 1. Default is 0.
analyzeduration integer (input)

Specify how many microseconds are analyzed to probe the input. A higher value will enable
detecting more accurate information, but will increase latency. It defaults to 5,000,000 microseconds
= 5 seconds.

cryptokey hexadecimal string (input)

Set decryption key.

indexmem integer (input)

Set max memory used for timestamp index (per stream).
rtbufsize integer (input)

Set max memory used for buffering real-time frames.
fdebug flags (input/output)

Print specific debug info.

Possible values:

‘ts’
max_delay integer (input/output)

Set maximum muxing or demuxing delay in microseconds.
fpsprobesize integer (input)

Set number of frames used to probe fps.
audio_preload integer (output)

Set microseconds by which audio packets should be interleaved earlier.
chunk_duration integer (output)

Set microseconds for each chunk.
chunk_size integer (output)

Set size in bytes for each chunk.
err_detect, f_err_detect flags (input)

Set error detection flags. £_err_detect is deprecated and should be used only via the £ fmpeg
tool.

Possible values:
‘crccheck’
Verify embedded CRCs.

‘bitstream’

Detect bitstream specification deviations.
‘buffer’
Detect improper bitstream length.
‘explode’
Abort decoding on minor error detection.
‘careful’
Consider things that violate the spec and have not been seen in the wild as errors.
‘compliant’
Consider all spec non compliancies as errors.
‘aggressive’

Consider things that a sane encoder should not do as an error.

max_interleave_delta integer (output)

Set maximum buffering duration for interleaving. The duration is expressed in microseconds, and
defaults to 1000000 (1 second).

To ensure all the streams are interleaved correctly, libavformat will wait until it has at least one
packet for each stream before actually writing any packets to the output file. When some streams are
"sparse" (i.e. there are large gaps between successive packets), this can result in excessive buffering.

This field specifies the maximum difference between the timestamps of the first and the last packet in
the muxing queue, above which libavformat will output a packet regardless of whether it has queued
a packet for all the streams.

If set to O, libavformat will continue buffering packets until it has a packet for each stream, regardless
of the maximum timestamp difference between the buffered packets.

use_wallclock_as_timestamps integer (input)

Use wallclock as timestamps if set to 1. Default is 0.

avoid_negative_ts integer (output)

Possible values:

‘make_non_negative’

Shift timestamps to make them non-negative. Also note that this affects only leading negative
timestamps, and not non-monotonic negative timestamps.

‘make_zero’

Shift timestamps so that the first timestamp is 0.
‘auto (default)’

Enables shifting when required by the target format.
‘disabled’

Disables shifting of timestamp.

When shifting is enabled, all output timestamps are shifted by the same amount. Audio, video, and
subtitles desynching and relative timestamp differences are preserved compared to how they would
have been without shifting.

skip_initial_bytes integer (input)

Set number of bytes to skip before reading header and frames if set to 1. Default is 0.
correct_ts_overflow integer (input)

Correct single timestamp overflows if set to 1. Default is 1.
flush_packets integer (output)

Flush the underlying I/O stream after each packet. Default is -1 (auto), which means that the
underlying protocol will decide, 1 enables it, and has the effect of reducing the latency, O disables it
and may increase IO throughput in some cases.

output_ts_offset offset (output)
Set the output time offset.

offset must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

The offset is added by the muxer to the output timestamps.

Specifying a positive offset means that the corresponding streams are delayed bt the time duration
specified in offset. Default value is 0 (meaning that no offset is applied).

format_whitelist Iist (input)

," separated list of allowed demuxers. By default all are allowed.

dump_separator string (input)

Separator used to separate the fields printed on the command line about the Stream parameters. For
example to separate the fields with newlines and indention:

ffprobe —-dump_separator "
" —-i ~/videos/matrixbench_mpeg2.mpg

max_streams integer (input)

Specifies the maximum number of streams. This can be used to reject files that would require too
many resources due to a large number of streams.

20.1 Format stream specifiers#

Format stream specifiers allow selection of one or more streams that match specific properties.
Possible forms of stream specifiers are:
stream index
Matches the stream with this index.
stream_typel:stream_index]

stream_type is one of following: ’v’ for video, ’a’ for audio, ’s’ for subtitle, ’d’ for data, and ’t’ for
attachments. If stream_index is given, then it matches the stream number stream_index of this type.
Otherwise, it matches all streams of this type.

p:program _id[:stream index]

If stream_index is given, then it matches the stream with number stream_index in the program with
the id program_id. Otherwise, it matches all streams in the program.

#stream id
Matches the stream by a format-specific ID.

The exact semantics of stream specifiers is defined by the
avformat_match_stream_specifier () function declared in the
libavformat/avformat .h header.

21 DemuxersfiTOC

Demuxers are configured elements in FFmpeg that can read the multimedia streams from a particular type
of file.

When you configure your FFmpeg build, all the supported demuxers are enabled by default. You can list
all available ones using the configure option ——1ist-demuxers.

You can disable all the demuxers using the configure option ——disable-demuxers, and selectively
enable a single demuxer with the option ——enable-demuxer=DEMUXER, or disable it with the option
——disable-demuxer=DEMUXER.

The option —~demuxers of the ff* tools will display the list of enabled demuxers. Use —~formats to
view a combined list of enabled demuxers and muxers.

The description of some of the currently available demuxers follows.

21.1 agfjTOC]

Audible Format 2, 3, and 4 demuxer.

This demuxer is used to demux Audible Format 2, 3, and 4 (.aa) files.

21.2 applehttp#

Apple HTTP Live Streaming demuxer.

This demuxer presents all AVStreams from all variant streams. The id field is set to the bitrate variant
index number. By setting the discard flags on AV Streams (by pressing ’a’ or ’v’ in ffplay), the caller can
decide which variant streams to actually receive. The total bitrate of the variant that the stream belongs to
is available in a metadata key named "variant_bitrate".

21.3 apngTO(Q

Animated Portable Network Graphics demuxer.

This demuxer is used to demux APNG files. All headers, but the PNG signature, up to (but not including)
the first fcTL chunk are transmitted as extradata. Frames are then split as being all the chunks between two
fcTL ones, or between the last fcTL and IEND chunks.

—ignore_loop bool

Ignore the loop variable in the file if set.
-max_fps int

Maximum framerate in frames per second (0 for no limit).
—-default_fps int

Default framerate in frames per second when none is specified in the file (0 meaning as fast as
possible).

21.4 ast#TOC

Advanced Systems Format demuxer.
This demuxer is used to demux ASF files and MMS network streams.
—-no_resync_search bool

Do not try to resynchronize by looking for a certain optional start code.

21.5 concat#]

Virtual concatenation script demuxer.

This demuxer reads a list of files and other directives from a text file and demuxes them one after the
other, as if all their packets had been muxed together.

The timestamps in the files are adjusted so that the first file starts at 0 and each next file starts where the
previous one finishes. Note that it is done globally and may cause gaps if all streams do not have exactly
the same length.

All files must have the same streams (same codecs, same time base, etc.).

The duration of each file is used to adjust the timestamps of the next file: if the duration is incorrect
(because it was computed using the bit-rate or because the file is truncated, for example), it can cause
artifacts. The duration directive can be used to override the duration stored in each file.

21.5.1 Syntax#[TOC

The script is a text file in extended-ASCII, with one directive per line. Empty lines, leading spaces and
lines starting with *#’ are ignored. The following directive is recognized:

file path
Path to a file to read; special characters and spaces must be escaped with backslash or single quotes.
All subsequent file-related directives apply to that file.

ffconcat version 1.0
Identify the script type and version. It also sets the safe option to 1 if it was -1.

To make FFmpeg recognize the format automatically, this directive must appear exactly as is (no
extra space or byte-order-mark) on the very first line of the script.

duration dur

Duration of the file. This information can be specified from the file; specifying it here may be more
efficient or help if the information from the file is not available or accurate.

If the duration is set for all files, then it is possible to seek in the whole concatenated video.
inpoint timestamp

In point of the file. When the demuxer opens the file it instantly seeks to the specified timestamp.
Seeking is done so that all streams can be presented successfully at In point.

This directive works best with intra frame codecs, because for non-intra frame ones you will usually
get extra packets before the actual In point and the decoded content will most likely contain frames
before In point too.

For each file, packets before the file In point will have timestamps less than the calculated start
timestamp of the file (negative in case of the first file), and the duration of the files (if not specified
by the durat ion directive) will be reduced based on their specified In point.

Because of potential packets before the specified In point, packet timestamps may overlap between
two concatenated files.

outpoint timestamp

Out point of the file. When the demuxer reaches the specified decoding timestamp in any of the
streams, it handles it as an end of file condition and skips the current and all the remaining packets
from all streams.

Out point is exclusive, which means that the demuxer will not output packets with a decoding
timestamp greater or equal to Out point.

This directive works best with intra frame codecs and formats where all streams are tightly
interleaved. For non-intra frame codecs you will usually get additional packets with presentation
timestamp after Out point therefore the decoded content will most likely contain frames after Out
point too. If your streams are not tightly interleaved you may not get all the packets from all streams
before Out point and you may only will be able to decode the earliest stream until Out point.

The duration of the files (if not specified by the duration directive) will be reduced based on their
specified Out point.

file_packet_metadata key=value

Metadata of the packets of the file. The specified metadata will be set for each file packet. You can
specify this directive multiple times to add multiple metadata entries.

stream

Introduce a stream in the virtual file. All subsequent stream-related directives apply to the last
introduced stream. Some streams properties must be set in order to allow identifying the matching
streams in the subfiles. If no streams are defined in the script, the streams from the first file are

copied.
exact_stream id id

Set the id of the stream. If this directive is given, the string with the corresponding id in the subfiles
will be used. This is especially useful for MPEG-PS (VOB) files, where the order of the streams is
not reliable.

21.5.2 Options#]

This demuxer accepts the following option:
safe

If set to 1, reject unsafe file paths. A file path is considered safe if it does not contain a protocol
specification and is relative and all components only contain characters from the portable character
set (letters, digits, period, underscore and hyphen) and have no period at the beginning of a
component.

If set to 0, any file name is accepted.

The default is 1.

-1 is equivalent to 1 if the format was automatically probed and O otherwise.
auto_convert

If set to 1, try to perform automatic conversions on packet data to make the streams concatenable.
The default is 1.

Currently, the only conversion is adding the h264_mp4toannexb bitstream filter to H.264 streams in
MP4 format. This is necessary in particular if there are resolution changes.

segment_time_metadata

If set to 1, every packet will contain the lavf.concat.start_time and the lavf.concat.duration packet
metadata values which are the start_time and the duration of the respective file segments in the
concatenated output expressed in microseconds. The duration metadata is only set if it is known
based on the concat file. The default is 0.

21.5.3 Exampled#]

® Use absolute filenames and include some comments:

my first filename

file /mnt/share/file-1.wav

my second filename including whitespace

file ’/mnt/share/file 2.wav’

my third filename including whitespace plus single quote
file ’/mnt/share/file 3’'\’’ .wav’

® Allow for input format auto-probing, use safe filenames and set the duration of the first file:
ffconcat version 1.0

file file-1.wav
duration 20.0

file subdir/file-2.wav

21.6 flv, live_fIfTOC]

Adobe Flash Video Format demuxer.

This demuxer is used to demux FLV files and RTMP network streams. In case of live network streams, if
you force format, you may use live_flv option instead of flv to survive timestamp discontinuities.

ffmpeg -f flv -i myfile.flv ...
ffmpeg -f live_flv -i rtmp://<any.server>/anything/key

—flv_metadata bool

Allocate the streams according to the onMetaData array content.

21.7 giffiTOC]

Animated GIF demuxer.
It accepts the following options:
min_delay

Set the minimum valid delay between frames in hundredths of seconds. Range is 0 to 6000. Default
value is 2.

max_gif_delay

Set the maximum valid delay between frames in hundredth of seconds. Range is 0 to 65535. Default
value is 65535 (nearly eleven minutes), the maximum value allowed by the specification.

default_delay

Set the default delay between frames in hundredths of seconds. Range is 0 to 6000. Default value is
10.

ignore_loop

GIF files can contain information to loop a certain number of times (or infinitely). If ignore_loop
is set to 1, then the loop setting from the input will be ignored and looping will not occur. If set to 0,
then looping will occur and will cycle the number of times according to the GIF. Default value is 1.

For example, with the overlay filter, place an infinitely looping GIF over another video:

ffmpeg —-i input.mp4 -ignore_loop 0 —-i input.gif -filter_complex overlay=shortest=1 out.mkv

Note that in the above example the shortest option for overlay filter is used to end the output video at the
length of the shortest input file, which in this case is input .mp4 as the GIF in this example loops
infinitely.

21.8 his#

HLS demuxer
It accepts the following options:
live_start_index

segment index to start live streams at (negative values are from the end).
allowed_extensions

’,” separated list of file extensions that hls is allowed to access.
max_reload

Maximum number of times a insufficient list is attempted to be reloaded. Default value is 1000.

21.9 image2#TOC

Image file demuxer.

This demuxer reads from a list of image files specified by a pattern. The syntax and meaning of the pattern
is specified by the option pattern_type.

The pattern may contain a suffix which is used to automatically determine the format of the images
contained in the files.

The size, the pixel format, and the format of each image must be the same for all the files in the sequence.
This demuxer accepts the following options:
framerate
Set the frame rate for the video stream. It defaults to 25.
loop

If set to 1, loop over the input. Default value is 0.

pattern_type
Select the pattern type used to interpret the provided filename.
pattern_type accepts one of the following values.
none

Disable pattern matching, therefore the video will only contain the specified image. You should
use this option if you do not want to create sequences from multiple images and your filenames
may contain special pattern characters.

sequence

Select a sequence pattern type, used to specify a sequence of files indexed by sequential
numbers.

A sequence pattern may contain the string "%d" or "%0Nd", which specifies the position of the
characters representing a sequential number in each filename matched by the pattern. If the form
"%d0Nd" is used, the string representing the number in each filename is 0-padded and N is the
total number of 0-padded digits representing the number. The literal character "%’ can be
specified in the pattern with the string "%%".

If the sequence pattern contains "%d" or "%0Nd", the first filename of the file list specified by
the pattern must contain a number inclusively contained between start_number and
start_number+start_number_range-1, and all the following numbers must be sequential.

For example the pattern "img-%03d.bmp" will match a sequence of filenames of the form
img-001.bmp, img-002.bmp, ..., img—010.bmp, etc.; the pattern "1% % m% %g-%d.jpg"
will match a sequence of filenames of the form i$m%g-1. jpg, 1%$m%g-2. jpg, ..
1%$m%g-10. jpg, etc.

Note that the pattern must not necessarily contain "%d" or "%0Nd", for example to convert a
single image file img . jpeg you can employ the command:
ffmpeg —-i img.jpeg img.png

glob
Select a glob wildcard pattern type.

The pattern is interpreted like a g1lob () pattern. This is only selectable if libavformat was
compiled with globbing support.

glob_sequence (deprecated, will be removed)

Select a mixed glob wildcard/sequence pattern.

If your version of libavformat was compiled with globbing support, and the provided pattern
contains at least one glob meta character among $*? [] { } that is preceded by an unescaped
"%", the pattern is interpreted like a glob () pattern, otherwise it is interpreted like a sequence
pattern.

All glob special characters $* 72 [] { } must be prefixed with "%". To escape a literal "%" you
shall use "%%".

For example the pattern foo-%* . jpeg will match all the filenames prefixed by "foo-" and
terminating with ".jpeg", and foo-%?%?%7?. jpeg will match all the filenames prefixed with
"foo-", followed by a sequence of three characters, and terminating with ".jpeg".
This pattern type is deprecated in favor of glob and sequence.

Default value is glob_sequence.

pixel_format

Set the pixel format of the images to read. If not specified the pixel format is guessed from the first
image file in the sequence.

start_number
Set the index of the file matched by the image file pattern to start to read from. Default value is 0.
start_number_range

Set the index interval range to check when looking for the first image file in the sequence, starting
from start_number. Default value is 5.

ts_from _file

If set to 1, will set frame timestamp to modification time of image file. Note that monotonity of
timestamps is not provided: images go in the same order as without this option. Default value is 0. If
set to 2, will set frame timestamp to the modification time of the image file in nanosecond precision.

video_size

Set the video size of the images to read. If not specified the video size is guessed from the first image
file in the sequence.

21.9.1 Example§f|TOC

® Use ffmpeg for creating a video from the images in the file sequence img-001. jpeg,
img-002. jpeg, ..., assuming an input frame rate of 10 frames per second:

ffmpeg —-framerate 10 —-i ’"img-%03d.jpeg’ out.mkv

® As above, but start by reading from a file with index 100 in the sequence:

ffmpeg —-framerate 10 —-start_number 100 -i ’"img-%03d.Jjpeg’ out.mkwv

® Read images matching the "*.png" glob pattern , that is all the files terminating with the ".png"
suffix:

ffmpeg —-framerate 10 -pattern_type glob -i "*.png" out.mkv

21.10 libgme#]

The Game Music Emu library is a collection of video game music file emulators.

See |http://code.google.com/p/game-music-emu/| for more information.

Some files have multiple tracks. The demuxer will pick the first track by default. The track_index
option can be used to select a different track. Track indexes start at 0. The demuxer exports the number of
tracks as tracks meta data entry.

For very large files, the max_size option may have to be adjusted.

21.11 libopenmpt#[TOC

libopenmpt based module demuxer

See |https://lib.openmpt.org/libopenmpt/| for more information.

Some files have multiple subsongs (tracks) this can be set with the subsong option.
It accepts the following options:
subsong

Set the subsong index. This can be either ’all’, ’auto’, or the index of the subsong. Subsong indexes
start at 0. The default is "auto’.

The default value is to let libopenmpt choose.
layout

Set the channel layout. Valid values are 1, 2, and 4 channel layouts. The default value is STEREO.
sample_rate

Set the sample rate for libopenmpt to output. Range is from 1000 to INT_MAX. The value default is
48000.

http://code.google.com/p/game-music-emu/
https://lib.openmpt.org/libopenmpt/

21.12 mov/mp4/3gp/Quick Timée#

QuickTime / MP4 demuxer.
This demuxer accepts the following options:
enable_drefs

Enable loading of external tracks, disabled by default. Enabling this can theoretically leak
information in some use cases.

use_absolute_path

Allows loading of external tracks via absolute paths, disabled by default. Enabling this poses a
security risk. It should only be enabled if the source is known to be non malicious.

21.13 mpegts#[TOC

MPEG-2 transport stream demuxer.
This demuxer accepts the following options:
resync_size
Set size limit for looking up a new synchronization. Default value is 65536.
fix_teletext_pts

Override teletext packet PTS and DTS values with the timestamps calculated from the PCR of the
first program which the teletext stream is part of and is not discarded. Default value is 1, set this
option to 0 if you want your teletext packet PTS and DTS values untouched.

ts_packetsize

Output option carrying the raw packet size in bytes. Show the detected raw packet size, cannot be set
by the user.

scan_all_pmts

Scan and combine all PMTs. The value is an integer with value from -1 to 1 (-1 means automatic
setting, 1 means enabled, 0 means disabled). Default value is -1.

21.14 mpjpeg#

MIJPEG encapsulated in multi-part MIME demuxer.

This demuxer allows reading of MJPEG, where each frame is represented as a part of
multipart/x-mixed-replace stream.

strict_mime_boundary

Default implementation applies a relaxed standard to multi-part MIME boundary detection, to
prevent regression with numerous existing endpoints not generating a proper MIME MJPEG stream.
Turning this option on by setting it to 1 will result in a stricter check of the boundary value.

21.15 rawvided#[TO(

Raw video demuxer.

This demuxer allows one to read raw video data. Since there is no header specifying the assumed video
parameters, the user must specify them in order to be able to decode the data correctly.

This demuxer accepts the following options:
framerate
Set input video frame rate. Default value is 25.
pixel_ format
Set the input video pixel format. Default value is yuv420p.
video_size
Set the input video size. This value must be specified explicitly.

For example to read a rawvideo file input . raw with £ fplay, assuming a pixel format of rgb24, a
video size of 320x240, and a frame rate of 10 images per second, use the command:

ffplay -f rawvideo -pixel_format rgb24 -video_size 320x240 -framerate 10 input.raw

21.16 sbg#[TOC]

SBaGen script demuxer.

This demuxer reads the script language used by SBaGen |http://uazu.net/sbagen/|to generate binaural beats
sessions. A SBG script looks like that:

http://uazu.net/sbagen/

—-SE

a: 300-2.5/3 440+4.5/0
b: 300-2.5/0 440+4.5/3
off: -
NOW
+0:07:00
+0:14:00
+0:21:00
+0:30:00 off

I
mn
oM 0w

A SBG script can mix absolute and relative timestamps. If the script uses either only absolute timestamps
(including the script start time) or only relative ones, then its layout is fixed, and the conversion is
straightforward. On the other hand, if the script mixes both kind of timestamps, then the NOW reference
for relative timestamps will be taken from the current time of day at the time the script is read, and the
script layout will be frozen according to that reference. That means that if the script is directly played, the
actual times will match the absolute timestamps up to the sound controller’s clock accuracy, but if the user
somehow pauses the playback or seeks, all times will be shifted accordingly.

21.17 tedcaptions#]
JSON captions used for [TED Talks]

TED does not provide links to the captions, but they can be guessed from the page. The file
tools/bookmarklets.html from the FFmpeg source tree contains a bookmarklet to expose them.

This demuxer accepts the following option:
start_time

Set the start time of the TED talk, in milliseconds. The default is 15000 (15s). It is used to sync the
captions with the downloadable videos, because they include a 15s intro.

Example: convert the captions to a format most players understand:

ffmpeg —-1i http://www.ted.com/talks/subtitles/id/1/lang/en talkl-en.srt

22 Muxersf|TOC

Muxers are configured elements in FFmpeg which allow writing multimedia streams to a particular type of
file.

When you configure your FFmpeg build, all the supported muxers are enabled by default. You can list all
available muxers using the configure option ——1ist-muxers.

You can disable all the muxers with the configure option ——disable-muxers and selectively enable /
disable single muxers with the options ——enable-muxer=MUXER/ --disable-muxer=MUXER.

http://www.ted.com/

The option —-muxers of the ff* tools will display the list of enabled muxers. Use —formats to view a
combined list of enabled demuxers and muxers.

A description of some of the currently available muxers follows.

22.1 aifffTOC

Audio Interchange File Format muxer.

22.1.1 Options#]

It accepts the following options:
write_id3v2

Enable ID3v2 tags writing when set to 1. Default is O (disabled).
id3v2_version

Select ID3v2 version to write. Currently only version 3 and 4 (aka. ID3v2.3 and ID3v2.4) are
supported. The default is version 4.

22.2 asffiTOC

Advanced Systems Format muxer.

Note that Windows Media Audio (wma) and Windows Media Video (wmv) use this muxer too.

22.2.1 Optionsf[TOC

It accepts the following options:
packet_size

Set the muxer packet size. By tuning this setting you may reduce data fragmentation or muxer
overhead depending on your source. Default value is 3200, minimum is 100, maximum is 64k.

22.3 avifiTO(Q

Audio Video Interleaved muxer.

22.3.1 Optionsf[TOC

It accepts the following options:

reserve_index_space

Reserve the specified amount of bytes for the OpenDML master index of each stream within the file
header. By default additional master indexes are embedded within the data packets if there is no space left
in the first master index and are linked together as a chain of indexes. This index structure can cause
problems for some use cases, e.g. third-party software strictly relying on the OpenDML index

specification or when file seeking is slow. Reserving enough index space in the file header avoids these
problems.

The required index space depends on the output file size and should be about 16 bytes per gigabyte.
When this option is omitted or set to zero the necessary index space is guessed.

write_channel_mask
Write the channel layout mask into the audio stream header.

This option is enabled by default. Disabling the channel mask can be useful in specific scenarios, e.g.
when merging multiple audio streams into one for compatibility with software that only supports a
single audio stream in AVI (see (ffmpeg-filters)the "amerge" section in the ffmpeg-filters manual).

22.4 chromaprint#]

Chromaprint fingerprinter

This muxer feeds audio data to the Chromaprint library, which generates a fingerprint for the provided
audio data. It takes a single signed native-endian 16-bit raw audio stream.

22.4.1 Optionsf[TOC

silence_threshold

Threshold for detecting silence, ranges from 0 to 32767. -1 for default (required for use with the
AcoustID service).

algorithm
Algorithm index to fingerprint with.
fp_format
Format to output the fingerprint as. Accepts the following options:
‘raw’
Binary raw fingerprint
‘compressed’

Binary compressed fingerprint

‘basebd’

Base64 compressed fingerprint

22.5 erdfTOC

CRC (Cyclic Redundancy Check) testing format.

This muxer computes and prints the Adler-32 CRC of all the input audio and video frames. By default
audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the
CRC.

The output of the muxer consists of a single line of the form: CRC=0xCRC, where CRC is a hexadecimal
number 0-padded to 8 digits containing the CRC for all the decoded input frames.

See also the [framecrc| muxer.

22.5.1 Examples#[TOC]

For example to compute the CRC of the input, and store it in the file out . crc:
ffmpeg —-i INPUT -f crc out.crc

You can print the CRC to stdout with the command:

ffmpeg -i INPUT -f crc -

You can select the output format of each frame with £ fmpeg by specifying the audio and video codec and
format. For example to compute the CRC of the input audio converted to PCM unsigned 8-bit and the
input video converted to MPEG-2 video, use the command:

ffmpeg —i INPUT -c:a pcm_u8 -c:v mpeg2video —-f crc -

22.6 fIVH[TO(]

Adobe Flash Video Format muxer.
This muxer accepts the following options:
flvflags flags
Possible values:
‘aac_seq header_detect’
Place AAC sequence header based on audio stream data.

‘no_sequence_end’

Disable sequence end tag.
‘no_metadata’

Disable metadata tag.
‘no_duration_filesize’

Disable duration and filesize in metadata when they are equal to zero at the end of stream. (Be
used to non-seekable living stream).

‘add_keyframe_index’

Used to facilitate seeking; particularly for HTTP pseudo streaming.

22.7 dash#TO(C

Dynamic Adaptive Streaming over HTTP (DASH) muxer that creates segments and manifest files
according to the MPEG-DASH standard ISO/IEC 23009-1:2014.

For more information see:

® [SO DASH Specification:
|http://standards.iso.org/ittf/Publicly AvailableStandards/c065274_ISO_IEC_23009-1_2014.zip|
® WebM DASH Specification:
|https://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification|

It creates a MPD manifest file and segment files for each stream.

The segment filename might contain pre-defined identifiers used with SegmentTemplate as defined in
section 5.3.9.4.4 of the standard. Available identifiers are "$RepresentationID$", "$Number$",
"$Bandwidth$" and "$Time$".

ffmpeg -re -i <input> -map 0 -map 0 -c:a libfdk_aac -c:v libx264
-b:v:0 800k -b:v:1 300k -s:v:1 320x170 —-profile:v:1 baseline
—profile:v:0 main -bf 1 -keyint_min 120 -g 120 -sc_threshold 0
-b_strategy 0 —-ar:a:1 22050 -use_timeline 1 -use_template 1
-window_size 5 -adaptation_sets "id=0, streams=v id=1l, streams=a"
-f dash /path/to/out.mpd
-min_seg_duration microseconds

Set the segment length in microseconds.

-window_size size

Set the maximum number of segments kept in the manifest.

http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip
https://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification

—-extra_window_size size

Set the maximum number of segments kept outside of the manifest before removing from disk.
—-remove_at_exit remove

Enable (1) or disable (0) removal of all segments when finished.
—use_template template

Enable (1) or disable (0) use of SegmentTemplate instead of SegmentList.
—use_timeline timeline

Enable (1) or disable (0) use of SegmentTimeline in SegmentTemplate.
-single_file single file

Enable (1) or disable (0) storing all segments in one file, accessed using byte ranges.
—-single_file_name file name

DASH-templated name to be used for baseURL. Implies single_file set to "1".
—init_seg_name init_name

DASH-templated name to used for the initialization segment. Default is
"init-stream$Representation]D$.m4s"

-media_seg_name segment_name

DASH-templated name to used for the media segments. Default is
"chunk-stream$Representation]D$-$Number%05d$.m4s"

—utc_timing_url utc_url

URL of the page that will return the UTC timestamp in ISO format. Example:
"https://time.akamai.com/?iso"

—adaptation_sets adaptation_sets

Assign streams to AdaptationSets. Syntax is "id=x,streams=a,b,c id=y,streams=d,e" with x and y
being the IDs of the adaptation sets and a,b,c,d and e are the indices of the mapped streams.

To map all video (or audio) streams to an AdaptationSet, "v" (or "a") can be used as stream identifier
instead of IDs.

When no assignment is defined, this defaults to an AdaptationSet for each stream.

22.8 framecrdfTOC

Per-packet CRC (Cyclic Redundancy Check) testing format.

This muxer computes and prints the Adler-32 CRC for each audio and video packet. By default audio
frames are converted to signed 16-bit raw audio and video frames to raw video before computing the
CRC.

The output of the muxer consists of a line for each audio and video packet of the form:
stream_index, packet_dts, packet_pts, packet_duration, packet_size, 0xCRC

CRC is a hexadecimal number O-padded to 8 digits containing the CRC of the packet.

22.8.1 Examples#[TOC]

For example to compute the CRC of the audio and video frames in INPUT, converted to raw audio and
video packets, and store it in the file out . crc:

ffmpeg -1 INPUT -f framecrc out.crc
To print the information to stdout, use the command:

ffmpeg —-i INPUT -f framecrc -

With £ fmpeg, you can select the output format to which the audio and video frames are encoded before
computing the CRC for each packet by specifying the audio and video codec. For example, to compute the
CRC of each decoded input audio frame converted to PCM unsigned 8-bit and of each decoded input
video frame converted to MPEG-2 video, use the command:

ffmpeg —-i INPUT -c:a pcm_u8 -c:v mpeg2video —-f framecrc -

See also the [cr¢|muxer.

22.9 framehash#[TO(

Per-packet hash testing format.

This muxer computes and prints a cryptographic hash for each audio and video packet. This can be used
for packet-by-packet equality checks without having to individually do a binary comparison on each.

By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before
computing the hash, but the output of explicit conversions to other codecs can also be used. It uses the
SHA-256 cryptographic hash function by default, but supports several other algorithms.

The output of the muxer consists of a line for each audio and video packet of the form:

stream_index, packet_dts, packet_pts, packet_duration, packet_size, hash
hash is a hexadecimal number representing the computed hash for the packet.
hash algorithm

Use the cryptographic hash function specified by the string algorithm. Supported values include MD5,
murmur3, RIPEMD128, RIPEMD160, RIPEMD256, RIPEMD320, SHA160, SHA224, SHA256
(default), SHA512/224, SHA512/256, SHA384, SHA512, CRC32 and adler32.

22.9.1 Examples#[TOC]

To compute the SHA-256 hash of the audio and video frames in INPUT, converted to raw audio and video
packets, and store it in the file out . sha256:

ffmpeg -1 INPUT -f framehash out.sha256
To print the information to stdout, using the MD5 hash function, use the command:

ffmpeg —-i INPUT -f framehash -hash md5 -

See also the muxer.
22.10 framemd 5]

Per-packet MDS5 testing format.

This is a variant of the [framehash| muxer. Unlike that muxer, it defaults to using the MD5 hash function.

22.10.1 Examples#|TOC

To compute the MD5 hash of the audio and video frames in INPUT, converted to raw audio and video
packets, and store it in the file out . md5:

ffmpeg -1 INPUT -f framemd5 out.md5
To print the information to stdout, use the command:

ffmpeg —-i INPUT -f framemd5 -

See also the [framehash| and [md5| muxers.

22.11 giffj[TOC

Animated GIF muxer.

It accepts the following options:

loop
Set the number of times to loop the output. Use —1 for no loop, 0 for looping indefinitely (default).
final_ delay

Force the delay (expressed in centiseconds) after the last frame. Each frame ends with a delay until
the next frame. The default is —1, which is a special value to tell the muxer to re-use the previous
delay. In case of a loop, you might want to customize this value to mark a pause for instance.

For example, to encode a gif looping 10 times, with a 5 seconds delay between the loops:

ffmpeg —-i INPUT -loop 10 —-final_delay 500 out.gif

Note 1: if you wish to extract the frames into separate GIF files, you need to force the [image2] muxer:
ffmpeg -i INPUT -c:v gif -f image2 "out%d.gif"

Note 2: the GIF format has a very large time base: the delay between two frames can therefore not be
smaller than one centi second.

22.12 hashTO(

Hash testing format.

This muxer computes and prints a cryptographic hash of all the input audio and video frames. This can be
used for equality checks without having to do a complete binary comparison.

By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before
computing the hash, but the output of explicit conversions to other codecs can also be used. Timestamps
are ignored. It uses the SHA-256 cryptographic hash function by default, but supports several other
algorithms.

The output of the muxer consists of a single line of the form: algo=hash, where algo is a short string
representing the hash function used, and hash is a hexadecimal number representing the computed hash.

hash algorithm

Use the cryptographic hash function specified by the string algorithm. Supported values include MD5,
murmur3, RIPEMD128, RIPEMD160, RIPEMD256, RIPEMD320, SHA160, SHA224, SHA256
(default), SHA512/224, SHA512/256, SHA384, SHA512, CRC32 and adler32.

22.12.1 Examples#]

To compute the SHA-256 hash of the input converted to raw audio and video, and store it in the file
out.sha256:

ffmpeg —-i INPUT -f hash out.sha256

To print an MDS5 hash to stdout use the command:

ffmpeg —-i INPUT -f hash -hash md5 -

See also the muxer.
22.13 hid]

Apple HTTP Live Streaming muxer that segments MPEG-TS according to the HTTP Live Streaming
(HLS) specification.

It creates a playlist file, and one or more segment files. The output filename specifies the playlist filename.

By default, the muxer creates a file for each segment produced. These files have the same name as the
playlist, followed by a sequential number and a .ts extension.

For example, to convert an input file with £ fmpeg:

ffmpeg —-i in.nut out.m3u8

This example will produce the playlist, out .m3u8, and segment files: out0.ts, outl.ts,out2.ts,
etc.

See also the segment] muxer, which provides a more generic and flexible implementation of a segmenter,
and can be used to perform HLS segmentation.

22.13.1 Options#TOC

This muxer supports the following options:
hls_init_time seconds

Set the initial target segment length in seconds. Default value is 0. Segment will be cut on the next
key frame after this time has passed on the first m3u8 list. After the initial playlist is filled £ fmpeg
will cut segments at duration equal to hls_time

hls_time seconds

Set the target segment length in seconds. Default value is 2. Segment will be cut on the next key
frame after this time has passed.

hls_list_size size

Set the maximum number of playlist entries. If set to O the list file will contain all the segments.
Default value is 5.

hls_ts_options options_list

Set output format options using a :-separated list of key=value parameters. Values containing :
special characters must be escaped.

hls_wrap wrap

This is a deprecated option, you can use hls_list_sizeand hls_flags
delete_segments instead it

This option is useful to avoid to fill the disk with many segment files, and limits the maximum
number of segment files written to disk to wrap.

hls_start_number_source

Start the playlist sequence number (#EXT-X-MEDIA-SEQUENCE) according to the specified
source. Unless hls_flags single_file is set, it also specifies source of starting sequence
numbers of segment and subtitle filenames. In any case, if hls_flags append_list issetand
read playlist sequence number is greater than the specified start sequence number, then that value will
be used as start value.

It accepts the following values:
generic (default)

Set the starting sequence numbers according to start_number option value.
epoch

The start number will be the seconds since epoch (1970-01-01 00:00:00)
datetime

The start number will be based on the current date/time as YYYYmmddHHMMSS. e.g.
20161231235759.

start_number number

Start the playlist sequence number (#EXT-X-MEDIA-SEQUENCE) from the specified number when
his_start_number_source value is generic. (This is the default case.) Unless hls_flags
single_file is set, it also specifies starting sequence numbers of segment and subtitle filenames.
Default value is 0.

hls_allow_cache allowcache
Explicitly set whether the client MAY (1) or MUST NOT (0) cache media segments.

hls_base_url baseurl

Append baseurl to every entry in the playlist. Useful to generate playlists with absolute paths.

Note that the playlist sequence number must be unique for each segment and it is not to be confused
with the segment filename sequence number which can be cyclic, for example if the wrap option is
specified.

hls_segment_filename filename

Set the segment filename. Unless hls_flags single_file is set, filename is used as a string
format with the segment number:

ffmpeg —-i in.nut -hls_segment_filename ’'file%03d.ts’ out.m3u8

This example will produce the playlist, out .m3u8, and segment files: £i1e000.ts,
file0O0l.ts, file002.ts, etc.

filename may contain full path or relative path specification, but only the file name part without any
path info will be contained in the m3u8 segment list. Should a relative path be specified, the path of
the created segment files will be relative to the current working directory. When use_localtime_mkdir
is set, the whole expanded value of filename will be written into the m3u8 segment list.

use_localtime

Use strftime() on filename to expand the segment filename with localtime. The segment number is
also available in this mode, but to use it, you need to specify second_level_segment_index hls_flag
and %%d will be the specifier.

ffmpeg -i in.nut -use_localtime 1 -hls_segment_filename ’file-%Y%m%d-%s.ts’ out.m3u8

This example will produce the playlist, out .m3u8, and segment files:
£fi1le-20160215-1455569023.ts,f11e-20160215-1455569024.ts, etc. Note: On
some systems/environments, the $s specifier is not available. See strftime () documentation.

ffmpeg -i in.nut -use_localtime 1 -hls_flags second_level_segment_index -hls_segment_filename ’file-%Y%m%d-%%04d.ts’ out.m3us8

This example will produce the playlist, out .m3u8, and segment files:
£fi1e-20160215-0001.ts, £i1e-20160215-0002.ts, etc.

use_localtime_mkdir

Used together with -use_localtime, it will create all subdirectories which is expanded in filename.

ffmpeg —-i in.nut -use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename ’%Y%m%d/file-%Y%m%d-%s.ts’ out.m3u8

This example will create a directory 201560215 (if it does not exist), and then produce the playlist,
out .m3u8, and segment files: 20160215/£f11e-20160215-1455569023.ts,
20160215/fi1e-20160215-1455569024.ts, etc.

ffmpeg -i in.nut -use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename ’%Y/%m/%d/file-%Y%m%d-%s.ts’ out.m3u8

This example will create a directory hierarchy 2016/02/15 (if any of them do not exist), and then
produce the playlist, out .m3u8, and segment files:
2016/02/15/£fi1e-20160215-1455569023.ts,
2016/02/15/£fi1e-20160215-1455569024 . ts, etc.

hls_key_info_file key_info_file

Use the information in key_info_file for segment encryption. The first line of key_info_file specifies
the key URI written to the playlist. The key URL is used to access the encryption key during
playback. The second line specifies the path to the key file used to obtain the key during the
encryption process. The key file is read as a single packed array of 16 octets in binary format. The
optional third line specifies the initialization vector (IV) as a hexadecimal string to be used instead of
the segment sequence number (default) for encryption. Changes to key_info_file will result in
segment encryption with the new key/IV and an entry in the playlist for the new key URI/IV if
hls_flags periodic_rekey is enabled.

Key info file format:
key URI

key file path
IV (optional)

Example key URIs:
http://server/file.key

/path/to/file.key
file.key

Example key file paths:

file.key
/path/to/file.key

Example IV:

0123456789ABCDEF0123456789ABCDEF

Key info file example:
http://server/file.key

/path/to/file.key
0123456789ABCDEF0123456789ABCDEF

Example shell script:

#!/bin/sh

BASE_URL=${1:-"."}

openssl rand 16 > file.key

echo $BASE_URL/file.key > file.keyinfo

echo file.key >> file.keyinfo

echo $ (openssl rand -hex 16) >> file.keyinfo

ffmpeg —-f lavfi -re -i testsrc —-c:v h264 -hls_flags delete_segments \
~hls_key_info_file file.keyinfo out.m3u8

-hls_enc enc

Enable (1) or disable (0) the AES128 encryption. When enabled every segment generated is
encrypted and the encryption key is saved as playlist name key.

-hls_enc_key key

Hex-coded 16byte key to encrypt the segments, by default it is randomly generated.
-hls_enc_key_url keyurl

If set, keyurl is prepended instead of baseurl to the key filename in the playlist.
-hls_enc_iv iv

Hex-coded 16byte initialization vector for every segment instead of the autogenerated ones.
hls_segment_type flags

Possible values:

‘mpegts’

If this flag is set, the hls segment files will format to mpegts. the mpegts files is used in all hls
versions.

‘fmp4’

If this flag is set, the hls segment files will format to fragment mp4 looks like dash. the fmp4
files is used in hls after version 7.

hls_fmp4_init_filename filename

set filename to the fragment files header file, default filename is init . mp4.
hls_flags flags

Possible values:

‘single_file’

If this flag is set, the muxer will store all segments in a single MPEG-TS file, and will use byte
ranges in the playlist. HLS playlists generated with this way will have the version number 4. For example:

ffmpeg —-i in.nut -hls_flags single_file out.m3u8
Will produce the playlist, out .m3u8, and a single segment file, out . ts.
‘delete_segments’

Segment files removed from the playlist are deleted after a period of time equal to the duration
of the segment plus the duration of the playlist.

‘append_list’

Append new segments into the end of old segment list, and remove the #EXT-X-ENDLIST
from the old segment list.

‘round_durations’

Round the duration info in the playlist file segment info to integer values, instead of using
floating point.

‘discont_start’

Add the #EXT-X-DISCONTINUITY tag to the playlist, before the first segment’s information.
‘omit_endlist’

Do not append the EXT-X-ENDLIST tag at the end of the playlist.
‘periodic_rekey’

The file specified by hls_key_info_file will be checked periodically and detect updates
to the encryption info. Be sure to replace this file atomically, including the file containing the
AES encryption key.

‘split_by_time’

Allow segments to start on frames other than keyframes. This improves behavior on some
players when the time between keyframes is inconsistent, but may make things worse on others,
and can cause some oddities during seeking. This flag should be used with the hls_time
option.

‘program_date_time’
Generate EXT-X-PROGRAM-DATE-TIME tags.

‘second_level_segment_index’

Makes it possible to use segment indexes as % %d in hls_segment_filename expression besides
date/time values when use_localtime is on. To get fixed width numbers with trailing zeroes, % %0xd
format is available where x is the required width.

‘second_level_segment_size’

Makes it possible to use segment sizes (counted in bytes) as % %s in hls_segment_filename
expression besides date/time values when use_localtime is on. To get fixed width numbers with
trailing zeroes, % %0xs format is available where x is the required width.

‘second_level_segment_duration’

Makes it possible to use segment duration (calculated in microseconds) as %%t in
hls_segment_filename expression besides date/time values when use_localtime is on. To get
fixed width numbers with trailing zeroes, % %0xt format is available where X is the required
width.

ffmpeg -i sample.mpeg \
-f hls -hls_time 3 -hls_list_size 5 \
-hls_flags second_level_segment_index+second_level_segment_size+second_level_segment_duration \
-use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename "segment_Ym%d$HIM%$S_%$%04d_%$%08s_%%013t.ts" stream.m3u8

This will produce segments like this:
segment_20170102194334_0003_00122200_0000003000000.¢ts,
segment_20170102194334_0004_00120072_0000003000000.ts etc.

‘temp_file’

Write segment data to filename.tmp and rename to filename only once the segment is complete.
A webserver serving up segments can be configured to reject requests to *.tmp to prevent access
to in-progress segments before they have been added to the m3u8 playlist.

hls_playlist_type event

Emit #EXT-X-PLAYLIST-TYPE :EVENT in the m3u8 header. Forces hls_1list_size to 0; the
playlist can only be appended to.

hls_playlist_type vod

Emit #EXT-X-PLAYLIST-TYPE :VOD in the m3u8 header. Forces hls_1list_size to 0; the
playlist must not change.

method
Use the given HTTP method to create the hls files.
ffmpeg -re -1 in.ts -f hls -method PUT http://example.com/live/out.m3u8

This example will upload all the mpegts segment files to the HTTP server using the HTTP PUT
method, and update the m3u8 files every re fresh times using the same method. Note that the
HTTP server must support the given method for uploading files.

http_user_agent

Override User-Agent field in HTTP header. Applicable only for HTTP output.

22.14 icg#|TOC]

ICO file muxer.
Microsoft’s icon file format (ICO) has some strict limitations that should be noted:

® Size cannot exceed 256 pixels in any dimension
® Only BMP and PNG images can be stored
® If a BMP image is used, it must be one of the following pixel formats:

BMP Bit Depth FFmpeg Pixel Format
1bit pals8

4bit pals8

8bit pals8

lébit rgb5551e

24bit bgr24

32bit bgra

® [f a BMP image is used, it must use the BITMAPINFOHEADER DIB header
® [f a PNG image is used, it must use the rgba pixel format

22.15 image2}]

Image file muxer.
The image file muxer writes video frames to image files.

The output filenames are specified by a pattern, which can be used to produce sequentially numbered
series of files. The pattern may contain the string "%d" or "%0Nd", this string specifies the position of the
characters representing a numbering in the filenames. If the form "%0Nd" is used, the string representing
the number in each filename is O-padded to N digits. The literal character %’ can be specified in the
pattern with the string "% %".

If the pattern contains "%d" or "%0Nd", the first filename of the file list specified will contain the number
1, all the following numbers will be sequential.

The pattern may contain a suffix which is used to automatically determine the format of the image files to
write.

For example the pattern "img-%03d.bmp" will specify a sequence of filenames of the form
img-001.bmp, img-002.bmp, ..., img—010 . bmp, etc. The pattern "img%%-%d.jpg" will specify a
sequence of filenames of the form img%-1. jpg, img%-2. jpg, ..., img%-10. jpg, etc.

22.15.1 Examples#|TOC

The following example shows how to use £ fmpegq for creating a sequence of files img—-001. jpegq,
img-002. jpedq, ..., taking one image every second from the input video:

ffmpeg -1 in.avi -vsync cfr -r 1 —-f image2 ’img-%03d.]jpeg’

Note that with £ fmpeg, if the format is not specified with the — £ option and the output filename specifies
an image file format, the image2 muxer is automatically selected, so the previous command can be written
as:

ffmpeg -i in.avi -vsync cfr -r 1 'img-%03d. jpeg’

Note also that the pattern must not necessarily contain "%d" or "%0Nd", for example to create a single
image file img. jpeg from the start of the input video you can employ the command:

ffmpeg -1 in.avi -f image2 —-frames:v 1 img.Jjpeg

The strftime option allows you to expand the filename with date and time information. Check the
documentation of the st rftime () function for the syntax.

For example to generate image files from the strftime () "%Y-%m-%d_%H-%M-%S" pattern, the
following f fmpeg command can be used:

ffmpeg -f v412 -r 1 -i /dev/video0 -f image2 -strftime 1 "%$Y-%m-%d_%$H-%M-%S.jpg"

22.15.2 Options#TOC

start_number
Start the sequence from the specified number. Default value is 1.
update

If set to 1, the filename will always be interpreted as just a filename, not a pattern, and the
corresponding file will be continuously overwritten with new images. Default value is O.

strftime

If set to 1, expand the filename with date and time information from st rft ime (). Default value is
0.

The image muxer supports the .Y.U.V image file format. This format is special in that that each image
frame consists of three files, for each of the YUV420P components. To read or write this image file
format, specify the name of the .Y’ file. The muxer will automatically open the .U’ and ’.V’ files as
required.

22.16 matroska#j[TOC]

Matroska container muxer.

This muxer implements the matroska and webm container specs.

22.16.1 Metadataf#]

The recognized metadata settings in this muxer are:
title
Set title name provided to a single track.
language
Specify the language of the track in the Matroska languages form.

The language can be either the 3 letters bibliographic ISO-639-2 (ISO 639-2/B) form (like "fre" for
French), or a language code mixed with a country code for specialities in languages (like "fre-ca" for
Canadian French).

stereo_mode
Set stereo 3D video layout of two views in a single video track.
The following values are recognized:
‘mono’
video is not stereo
‘left_right’
Both views are arranged side by side, Left-eye view is on the left
‘bottom_top’
Both views are arranged in top-bottom orientation, Left-eye view is at bottom
‘top_bottom’
Both views are arranged in top-bottom orientation, Left-eye view is on top
‘checkerboard_rl’

Each view is arranged in a checkerboard interleaved pattern, Left-eye view being first

‘checkerboard_1r’

Each view is arranged in a checkerboard interleaved pattern, Right-eye view being first
‘row_interleaved_rl’

Each view is constituted by a row based interleaving, Right-eye view is first row
‘row_interleaved_1r’

Each view is constituted by a row based interleaving, Left-eye view is first row
‘col_interleaved_rl’

Both views are arranged in a column based interleaving manner, Right-eye view is first column
‘col_interleaved_lr’

Both views are arranged in a column based interleaving manner, Left-eye view is first column
‘anaglyph_cyan_red’

All frames are in anaglyph format viewable through red-cyan filters
‘right_left’

Both views are arranged side by side, Right-eye view is on the left
‘anaglyph_green_magenta’

All frames are in anaglyph format viewable through green-magenta filters
‘block_1r’

Both eyes laced in one Block, Left-eye view is first
‘block_rl’

Both eyes laced in one Block, Right-eye view is first

For example a 3D WebM clip can be created using the following command line:

ffmpeg -i sample_left_right_clip.mpg —an -c:v libvpx -metadata stereo_mode=left_right -y stereo_clip.webm

22.16.2 Options#]

This muxer supports the following options:

reserve_index_space

By default, this muxer writes the index for seeking (called cues in Matroska terms) at the end of the
file, because it cannot know in advance how much space to leave for the index at the beginning of the
file. However for some use cases — e.g. streaming where seeking is possible but slow — it is useful to
put the index at the beginning of the file.

If this option is set to a non-zero value, the muxer will reserve a given amount of space in the file
header and then try to write the cues there when the muxing finishes. If the available space does not
suffice, muxing will fail. A safe size for most use cases should be about 5S0kB per hour of video.

Note that cues are only written if the output is seekable and this option will have no effect if it is not.

22.17 mdSH[TO(]

MDS5 testing format.

This is a variant of the [hashlmuxer. Unlike that muxer, it defaults to using the MD5 hash function.

22.17.1 Examples#|TOC

To compute the MD5 hash of the input converted to raw audio and video, and store it in the file
out .md5:

ffmpeg —-i INPUT -f md5 out.md5

You can print the MDS5 to stdout with the command:

ffmpeg -i INPUT -f md5 -

See also the |hash| and [framemd5| muxers.

22.18 mov, mp4, ismv#]

MOV/MP4/ISMV (Smooth Streaming) muxer.

The mov/mp4/ismv muxer supports fragmentation. Normally, a MOV/MP4 file has all the metadata about
all packets stored in one location (written at the end of the file, it can be moved to the start for better
playback by adding faststart to the movflags, or using the gt—faststart tool). A fragmented file
consists of a number of fragments, where packets and metadata about these packets are stored together.
Writing a fragmented file has the advantage that the file is decodable even if the writing is interrupted
(while a normal MOV/MP4 is undecodable if it is not properly finished), and it requires less memory
when writing very long files (since writing normal MOV/MP4 files stores info about every single packet
in memory until the file is closed). The downside is that it is less compatible with other applications.

22.18.1 Options#]
Fragmentation is enabled by setting one of the AVOptions that define how to cut the file into fragments:
-moov_size bytes

Reserves space for the moov atom at the beginning of the file instead of placing the moov atom at the
end. If the space reserved is insufficient, muxing will fail.

-movflags frag_keyframe

Start a new fragment at each video keyframe.
—frag_duration duration

Create fragments that are duration microseconds long.
—-frag_size size

Create fragments that contain up to size bytes of payload data.
-movflags frag_custom

Allow the caller to manually choose when to cut fragments, by calling av_write_frame (ctx,
NULL) to write a fragment with the packets written so far. (This is only useful with other
applications integrating libavformat, not from ffmpeg.)

-min_frag_duration duration
Don’t create fragments that are shorter than duration microseconds long.

If more than one condition is specified, fragments are cut when one of the specified conditions is fulfilled.
The exception to this is -min_frag_duration, which has to be fulfilled for any of the other
conditions to apply.

Additionally, the way the output file is written can be adjusted through a few other options:
-movflags empty_moov

Write an initial moov atom directly at the start of the file, without describing any samples in it.
Generally, an mdat/moov pair is written at the start of the file, as a normal MOV/MP4 file, containing
only a short portion of the file. With this option set, there is no initial mdat atom, and the moov atom
only describes the tracks but has a zero duration.

This option is implicitly set when writing ismv (Smooth Streaming) files.

-movflags separate_moof

Write a separate moof (movie fragment) atom for each track. Normally, packets for all tracks are
written in a moof atom (which is slightly more efficient), but with this option set, the muxer writes one
moof/mdat pair for each track, making it easier to separate tracks.

This option is implicitly set when writing ismv (Smooth Streaming) files.
-movflags faststart

Run a second pass moving the index (moov atom) to the beginning of the file. This operation can take
a while, and will not work in various situations such as fragmented output, thus it is not enabled by
default.

-movflags rtphint
Add RTP hinting tracks to the output file.
-movflags disable_chpl

Disable Nero chapter markers (chpl atom). Normally, both Nero chapters and a QuickTime chapter
track are written to the file. With this option set, only the QuickTime chapter track will be written.
Nero chapters can cause failures when the file is reprocessed with certain tagging programs, like
mp3Tag 2.61a and iTunes 11.3, most likely other versions are affected as well.

-movflags omit_tfhd _offset

Do not write any absolute base_data_offset in tthd atoms. This avoids tying fragments to absolute
byte positions in the file/streams.

-movflags default_base_moof

Similarly to the omit_tfhd_offset, this flag avoids writing the absolute base_data_offset field in tthd
atoms, but does so by using the new default-base-is-moof flag instead. This flag is new from
14496-12:2012. This may make the fragments easier to parse in certain circumstances (avoiding
basing track fragment location calculations on the implicit end of the previous track fragment).

-write_tmecd

Specify on to force writing a timecode track, of f to disable it and auto to write a timecode track
only for mov and mp4 output (default).

-movflags negative_cts_offsets

Enables utilization of version 1 of the CTTS box, in which the CTS offsets can be negative. This
enables the initial sample to have DTS/CTS of zero, and reduces the need for edit lists for some cases
such as video tracks with B-frames. Additionally, eases conformance with the DASH-IF
interoperability guidelines.

22.18.2 ExampldfTOC]

Smooth Streaming content can be pushed in real time to a publishing point on IIS with this muxer.
Example:

ffmpeg -re <normal input/transcoding options> -movflags isml+frag_keyframe -f ismv http://server/publishingpoint.isml/Streams (Encoderl)

22.18.3 Audible AAXH

Audible AAX files are encrypted M4B files, and they can be decrypted by specifying a 4 byte activation
secret.

ffmpeg —activation_bytes 1CEBOODA -i test.aax -vn -c:a copy output.mpé

22.19 mp3#

The MP3 muxer writes a raw MP3 stream with the following optional features:

® An ID3v2 metadata header at the beginning (enabled by default). Versions 2.3 and 2.4 are supported,
the 1d3v2_version private option controls which one is used (3 or 4). Setting 1d3v2_version
to 0 disables the ID3v2 header completely.

The muxer supports writing attached pictures (APIC frames) to the ID3v2 header. The pictures are
supplied to the muxer in form of a video stream with a single packet. There can be any number of
those streams, each will correspond to a single APIC frame. The stream metadata tags title and
comment map to APIC description and picture type respectively. See |http://id3.org/id3v2.4.0-frames|
for allowed picture types.

Note that the APIC frames must be written at the beginning, so the muxer will buffer the audio
frames until it gets all the pictures. It is therefore advised to provide the pictures as soon as possible
to avoid excessive buffering.

® A Xing/LAME frame right after the ID3v2 header (if present). It is enabled by default, but will be
written only if the output is seekable. The write_xing private option can be used to disable it. The
frame contains various information that may be useful to the decoder, like the audio duration or
encoder delay.

® A legacy ID3vl tag at the end of the file (disabled by default). It may be enabled with the
write_1d3v1l private option, but as its capabilities are very limited, its usage is not recommended.

Examples:

Write an mp3 with an ID3v2.3 header and an ID3v1 footer:

ffmpeg —-i INPUT -id3v2_version 3 -write_id3vl 1 out.mp3

To attach a picture to an mp3 file select both the audio and the picture stream with map:

http://id3.org/id3v2.4.0-frames

ffmpeg —-i input.mp3 -i cover.png -c copy —-map 0 -map 1
-metadata:s:v title="Album cover" -metadata:s:v comment="Cover (Front)" out.mp3

Write a "clean" MP3 without any extra features:

ffmpeg —-i input.wav -write_xing 0 -id3v2_version 0 out.mp3

22.20 mpegts#[TOC

MPEG transport stream muxer.
This muxer implements ISO 13818-1 and part of ETSI EN 300 468.

The recognized metadata settings in mpegts muxer are service_provider and service_name. If
they are not set the default for service_provider is ‘FFmpeg’ and the default for service_name
is ‘Service01’.

22.20.1 Optiong#[TOC
The muxer options are:
mpegts_transport_stream_id integer
Set the ‘transport_stream_id’. This identifies a transponder in DVB. Default is 0x0001.
mpegts_original_network_id integer

Set the ‘original_network_id’. This is unique identifier of a network in DVB. Its main use is
in the unique identification of a service through the path ‘Original_Network_1ID,
Transport_Stream_1ID’. Defaultis 0x0001.

mpegts_service_id integer
Set the ‘service_id’, also known as program in DVB. Default is 0x0001.
mpegts_service_type integer
Set the program ‘service_type’. Defaultis digital_tv. Accepts the following options:
‘hex_value’
Any hexdecimal value between 0x01 to 0xff as defined in ETSI 300 468.
‘digital_tv’
Digital TV service.

‘digital_radio’

Digital Radio service.
‘teletext’
Teletext service.
‘advanced_codec_digital_radio’
Advanced Codec Digital Radio service.
‘mpeg2_digital_hdtv’
MPEG?2 Digital HDTV service.
‘advanced_codec_digital_sdtv’
Advanced Codec Digital SDTV service.
‘advanced_codec_digital_hdtv’
Advanced Codec Digital HDTV service.
mpegts_pmt_start_pid integer
Set the first PID for PMT. Default is 0x1000. Max is 0x1£00.
mpegts_start_pid integer
Set the first PID for data packets. Default is 0x0100. Max is 0x0£00.
mpegts_m2ts_mode boolean
Enable m2ts mode if set to 1. Default value is —1 which disables m2ts mode.
muxrate integer
Set a constant muxrate. Default is VBR.
pes_payload_size integer
Set minimum PES packet payload in bytes. Default is 2930.
mpegts_flags flags
Set mpegts flags. Accepts the following options:

‘resend_headers’

Reemit PAT/PMT before writing the next packet.
‘latm’

Use LATM packetization for AAC.
‘pat_pmt_at_frames’

Reemit PAT and PMT at each video frame.
‘system_b’

Conform to System B (DVB) instead of System A (ATSC).
‘initial_discontinuity’

Mark the initial packet of each stream as discontinuity.

resend_headers integer

Reemit PAT/PMT before writing the next packet. This option is deprecated: use mpegts_flags
instead.

mpegts_copyts boolean

Preserve original timestamps, if value is set to 1. Default value is —1, which results in shifting
timestamps so that they start from O.

omit_video_pes_length boolean
Omit the PES packet length for video packets. Default is 1 (true).
pcr_period integer

Override the default PCR retransmission time in milliseconds. Ignored if variable muxrate is selected.
Default is 20.

pat_period double

Maximum time in seconds between PAT/PMT tables.
sdt_period double

Maximum time in seconds between SDT tables.
tables_version integer

Set PAT, PMT and SDT version (default 0, valid values are from O to 31, inclusively). This option
allows updating stream structure so that standard consumer may detect the change. To do so, reopen
output AVFormatContext (in case of API usage) or restart £ fmpegq instance, cyclically changing

tables_version value:

ffmpeg —-i sourcel.ts —-codec copy —-f mpegts -tables_version 0 udp://1.1.1.1:1111
ffmpeg —-i source2.ts —-codec copy —-f mpegts -tables_version 1 udp://1.1.1.1:1111

ffmpeg —-i source3.ts —-codec copy —-f mpegts -tables_version 31 udp://1.1.1.1:1111
ffmpeg —-i sourcel.ts —-codec copy —-f mpegts -tables_version 0 udp://1.1.1.1:1111
ffmpeg —-i source2.ts —-codec copy —-f mpegts -tables_version 1 udp://1.1.1.1:1111

22.20.2 Examplée#]

ffmpeg —-i file.mpg —-c copy \
-mpegts_original_network_id 0x1122 \
-mpegts_transport_stream_id 0x3344 \
-mpegts_service_id 0x5566 \
-mpegts_pmt_start_pid 0x1500 \
-mpegts_start_pid 0x150 \
-metadata service_provider="Some provider" \
-metadata service_name="Some Channel" \

out.ts
22.21 mxf, mxf_dl(ﬁl
MXF muxer.

22.21.1 Options#]

The muxer options are:
store_user_comments bool

Set if user comments should be stored if available or never. IRT D-10 does not allow user comments.
The default is thus to write them for mxf but not for mxf_d10

22.22 nullif]

Null muxer.
This muxer does not generate any output file, it is mainly useful for testing or benchmarking purposes.

For example to benchmark decoding with £ fmpeg you can use the command:

ffmpeg -benchmark -i INPUT -f null out.null

Note that the above command does not read or write the out . null file, but specifying the output file is
required by the f fmpeg syntax.

Alternatively you can write the command as:

ffmpeg -benchmark -i INPUT -f null -

22.23 nuffjTOC]

—-syncpoints flags
Change the syncpoint usage in nut:

default use the normal low-overhead seeking aids.
none do not use the syncpoints at all, reducing the overhead but
making the stream non-seekable;

Use of this option is not recommended, as the resulting files are very damage sensitive and
seeking is not possible. Also in general the overhead from syncpoints is negligible. Note,
-write_index 0 can be used to disable all growing data tables, allowing to mux endless
streams with limited memory and without these disadvantages.

timestamped extend the syncpoint with a wallclock field.
The none and timestamped flags are experimental.
-write_index bool

Werite index at the end, the default is to write an index.

ffmpeg —-i INPUT -f_strict experimental -syncpoints none - | processor

22.24 ogdHTO(

Ogg container muxer.
-page_duration duration

Preferred page duration, in microseconds. The muxer will attempt to create pages that are
approximately duration microseconds long. This allows the user to compromise between seek
granularity and container overhead. The default is 1 second. A value of 0 will fill all segments,
making pages as large as possible. A value of 1 will effectively use 1 packet-per-page in most
situations, giving a small seek granularity at the cost of additional container overhead.

—-serial_offset value

Serial value from which to set the streams serial number. Setting it to different and sufficiently large
values ensures that the produced ogg files can be safely chained.

22.25 segment, stream_segment, ssegmentH#]

Basic stream segmenter.

This muxer outputs streams to a number of separate files of nearly fixed duration. Output filename pattern
can be set in a fashion similar to or by using a st rft ime template if the st rft ime option is
enabled.

stream_segment is a variant of the muxer used to write to streaming output formats, i.e. which do not
require global headers, and is recommended for outputting e.g. to MPEG transport stream segments.
ssegment is a shorter alias for stream_segment.

Every segment starts with a keyframe of the selected reference stream, which is set through the
reference_stream option.

Note that if you want accurate splitting for a video file, you need to make the input key frames correspond
to the exact splitting times expected by the segmenter, or the segment muxer will start the new segment
with the key frame found next after the specified start time.

The segment muxer works best with a single constant frame rate video.

Optionally it can generate a list of the created segments, by setting the option segment_list. The list type is
specified by the segment_list_type option. The entry filenames in the segment list are set by default to the
basename of the corresponding segment files.

See also the [hls muxer, which provides a more specific implementation for HLS segmentation.

22.25.1 Options#]

The segment muxer supports the following options:
increment_tc I | 0

if set to 1, increment timecode between each segment If this is selected, the input need to have a
timecode in the first video stream. Default value is 0.

reference_stream specifier

Set the reference stream, as specified by the string specifier. If specifier is set to aut o, the reference
is chosen automatically. Otherwise it must be a stream specifier (see the “Stream specifiers” chapter
in the ffmpeg manual) which specifies the reference stream. The default value is auto.

segment__format format
Override the inner container format, by default it is guessed by the filename extension.

segment_format_options options_list

Set output format options using a :-separated list of key=value parameters. Values containing the :
special character must be escaped.

segment_list name
Generate also a listfile named name. If not specified no listfile is generated.
segment_list_flags flags
Set flags affecting the segment list generation.
It currently supports the following flags:
‘cache’
Allow caching (only affects M3US list files).
‘live’
Allow live-friendly file generation.
segment_list_size size

Update the list file so that it contains at most size segments. If O the list file will contain all the
segments. Default value is 0.

segment_list_entry_prefix prefix

Prepend prefix to each entry. Useful to generate absolute paths. By default no prefix is applied.
segment_list_type type

Select the listing format.

The following values are recognized:

‘flat’

Generate a flat list for the created segments, one segment per line.
‘csv, ext’

Generate a list for the created segments, one segment per line, each line matching the format
(comma-separated values):

segment_filename, segment_start_time, segment_end_time

segment_filename is the name of the output file generated by the muxer according to the
provided pattern. CSV escaping (according to RFC4180) is applied if required.

segment_start_time and segment_end_time specify the segment start and end time expressed in
seconds.

A list file with the suffix " .csv" or " .ext " will auto-select this format.
‘ext’ is deprecated in favor or ‘csv’.
‘ffconcat’

Generate an ffconcat file for the created segments. The resulting file can be read using the

FFmpeg demuxer.

A list file with the suffix " . ffcat" or ". ffconcat" will auto-select this format.
‘m3u8’

Generate an extended M3US file, version 3, compliant with
|http://tools.ietf.org/id/draft-pantos-http-live-streaming]

A list file with the suffix " .m3u8" will auto-select this format.
If not specified the type is guessed from the list file name suffix.
segment_time time

Set segment duration to time, the value must be a duration specification. Default value is "2". See also
the segment_times option.

Note that splitting may not be accurate, unless you force the reference stream key-frames at the given
time. See the introductory notice and the examples below.

segment_atclocktime 1 | 0

If set to "1" split at regular clock time intervals starting from 00:00 o’clock. The time value specified
in segment_time is used for setting the length of the splitting interval.

For example with segment_time set to "900" this makes it possible to create files at 12:00
o’clock, 12:15, 12:30, etc.

Default value is "0".
segment_clocktime_offset duration

Delay the segment splitting times with the specified duration when using
segment_atclocktime.

For example with segment_time setto "900" and segment_clocktime_offset setto "300"
this makes it possible to create files at 12:05, 12:20, 12:35, etc.

http://tools.ietf.org/id/draft-pantos-http-live-streaming

Default value is "0".
segment_clocktime_wrap_duration duration

Force the segmenter to only start a new segment if a packet reaches the muxer within the specified
duration after the segmenting clock time. This way you can make the segmenter more resilient to
backward local time jumps, such as leap seconds or transition to standard time from daylight savings
time.

Default is the maximum possible duration which means starting a new segment regardless of the
elapsed time since the last clock time.

segment_time_delta delta

Specify the accuracy time when selecting the start time for a segment, expressed as a duration
specification. Default value is "0".

When delta is specified a key-frame will start a new segment if its PTS satisfies the relation:
PTS >= start_time - time_delta

This option is useful when splitting video content, which is always split at GOP boundaries, in case a
key frame is found just before the specified split time.

In particular may be used in combination with the £ fmpeg option force_key_frames. The key frame
times specified by force_key_frames may not be set accurately because of rounding issues, with the
consequence that a key frame time may result set just before the specified time. For constant frame
rate videos a value of 1/(2*frame_rate) should address the worst case mismatch between the
specified time and the time set by force_key_frames.

segment_times times

Specify a list of split points. times contains a list of comma separated duration specifications, in
increasing order. See also the segment_t ime option.

segment__frames frames

Specify a list of split video frame numbers. frames contains a list of comma separated integer
numbers, in increasing order.

This option specifies to start a new segment whenever a reference stream key frame is found and the
sequential number (starting from 0) of the frame is greater or equal to the next value in the list.

segment_wrap limit
Wrap around segment index once it reaches limit.

segment_start_number number

Set the sequence number of the first segment. Defaults to 0.
strftime 1|0

Use the st rft ime function to define the name of the new segments to write. If this is selected, the
output segment name must contain a st rf£t ime function template. Default value is 0.

break_non_keyframes 1|0

If enabled, allow segments to start on frames other than keyframes. This improves behavior on some
players when the time between keyframes is inconsistent, but may make things worse on others, and
can cause some oddities during seeking. Defaults to 0.

reset_timestamps 1 | 0

Reset timestamps at the beginning of each segment, so that each segment will start with near-zero
timestamps. It is meant to ease the playback of the generated segments. May not work with some
combinations of muxers/codecs. It is set to 0 by default.

initial_offset offset

Specify timestamp offset to apply to the output packet timestamps. The argument must be a time
duration specification, and defaults to 0.

write_empty_segments 1 | 0

If enabled, write an empty segment if there are no packets during the period a segment would usually
span. Otherwise, the segment will be filled with the next packet written. Defaults to 0.

22.25.2 Examples#|TOC

® Remux the content of file in.mkv to a list of segments out-000.nut, out-001.nut, etc., and
write the list of generated segments to out . 1ist:

ffmpeg -i in.mkv -codec copy —map 0 —-f segment -segment_list out.list out%03d.nut
® Segment input and set output format options for the output segments:

ffmpeg -i in.mkv -f segment -segment_time 10 -segment_format_options movflags=+faststart out%03d.mp4
® Segment the input file according to the split points specified by the segment_times option:

ffmpeg —i in.mkv —codec copy -map 0 —-f segment -segment_list out.csv —-segment_times 1,2,3,5,8,13,21 out%03d.nut

® Usethe ffmpeg force_key_frames option to force key frames in the input at the specified
location, together with the segment option segment_time_delta to account for possible
roundings operated when setting key frame times.

ffmpeg -i in.mkv —-force_key_frames 1,2,3,5,8,13,21 —-codec:v mpeg4 —-codec:a pcm_sl6le —map 0 \
-f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 -segment_time_delta 0.05 out%03d.nut

In order to force key frames on the input file, transcoding is required.

® Segment the input file by splitting the input file according to the frame numbers sequence specified
with the segment_ frames option:

ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_frames 100,200,300,500,800 out%03d.nut

® Convert the in.mkv to TS segments using the 1ibx264 and aac encoders:

ffmpeg —-i in.mkv -map 0 -codec:v 1libx264 -codec:a aac -f ssegment -segment_list out.list out%03d.ts
® Segment the input file, and create an M3US live playlist (can be used as live HLS source):

ffmpeg -re -i in.mkv -codec copy -map 0 -f segment -segment_list playlist.m3u8 \
—-segment_list_flags +live -segment_time 10 out%$03d.mkv

22.26 smoothstreaming#]

Smooth Streaming muxer generates a set of files (Manifest, chunks) suitable for serving with conventional
web server.

window_size

Specify the number of fragments kept in the manifest. Default O (keep all).
extra_window_size

Specify the number of fragments kept outside of the manifest before removing from disk. Default 5.
lookahead_count

Specify the number of lookahead fragments. Default 2.
min_frag duration

Specify the minimum fragment duration (in microseconds). Default 5000000.
remove_at_exit

Specify whether to remove all fragments when finished. Default O (do not remove).

22.27 fifd#[TOC

The fifo pseudo-muxer allows the separation of encoding and muxing by using first-in-first-out queue and
running the actual muxer in a separate thread. This is especially useful in combination with the fteel muxer
and can be used to send data to several destinations with different reliability/writing speed/latency.

API users should be aware that callback functions (interrupt_callback, io_open and io_close) used within
its AVFormatContext must be thread-safe.

The behavior of the fifo muxer if the queue fills up or if the output fails is selectable,

® output can be transparently restarted with configurable delay between retries based on real time or
time of the processed stream.

® encoding can be blocked during temporary failure, or continue transparently dropping packets in case
fifo queue fills up.

fifo_format

Specify the format name. Useful if it cannot be guessed from the output name suffix.
queue_size

Specify size of the queue (number of packets). Default value is 60.
format_opts

Specify format options for the underlying muxer. Muxer options can be specified as a list of
key=value pairs separated by ’:’.

drop_pkts_on_overflow bool

If set to 1 (true), in case the fifo queue fills up, packets will be dropped rather than blocking the
encoder. This makes it possible to continue streaming without delaying the input, at the cost of
omitting part of the stream. By default this option is set to O (false), so in such cases the encoder will
be blocked until the muxer processes some of the packets and none of them is lost.

attempt_recovery bool

If failure occurs, attempt to recover the output. This is especially useful when used with network
output, since it makes it possible to restart streaming transparently. By default this option is set to 0
(false).

max_recovery_attempts

Sets maximum number of successive unsuccessful recovery attempts after which the output fails
permanently. By default this option is set to 0 (unlimited).

recovery_wait_time duration

Waiting time before the next recovery attempt after previous unsuccessful recovery attempt. Default
value is 5 seconds.

recovery_wait_streamtime bool

If set to O (false), the real time is used when waiting for the recovery attempt (i.e. the recovery will be
attempted after at least recovery_wait_time seconds). If set to 1 (true), the time of the processed
stream is taken into account instead (i.e. the recovery will be attempted after at least
recovery_wait_time seconds of the stream is omitted). By default, this option is set to O (false).

recover_any_error bool

If set to 1 (true), recovery will be attempted regardless of type of the error causing the failure. By
default this option is set to O (false) and in case of certain (usually permanent) errors the recovery is
not attempted even when attempt_recovery is set to 1.

restart_with_keyframe bool

Specify whether to wait for the keyframe after recovering from queue overflow or failure. This option
is set to O (false) by default.

22.27.1 Examplesf|TOC

® Stream something to rtmp server, continue processing the stream at real-time rate even in case of
temporary failure (network outage) and attempt to recover streaming every second indefinitely.

ffmpeg -re -i ... -c:v 1libx264 -c:a aac —-f fifo -fifo_format flv -map 0:v -map O:a
—drop_pkts_on_overflow 1 -attempt_recovery 1 -recovery_wait_time 1 rtmp://example.com/live/stream_name

22.28 teefiTOC

The tee muxer can be used to write the same data to several files or any other kind of muxer. It can be
used, for example, to both stream a video to the network and save it to disk at the same time.

It is different from specifying several outputs to the £ fmpeg command-line tool because the audio and
video data will be encoded only once with the tee muxer; encoding can be a very expensive process. It is
not useful when using the libavformat API directly because it is then possible to feed the same packets to
several muxers directly.

use_fifo bool

If set to 1, slave outputs will be processed in separate thread using muxer. This allows to
compensate for different speed/latency/reliability of outputs and setup transparent recovery. By
default this feature is turned off.

fifo_options
Options to pass to fifo pseudo-muxer instances. See

The slave outputs are specified in the file name given to the muxer, separated by ’|’. If any of the slave
name contains the ’|” separator, leading or trailing spaces or any special character, it must be escaped (see
(ffmpeg-utils)the "Quoting and escaping" section in the ffmpeg-utils(1) manual).

Muxer options can be specified for each slave by prepending them as a list of key=value pairs separated by
>:”, between square brackets. If the options values contain a special character or the ’:” separator, they must
be escaped; note that this is a second level escaping.

The following special options are also recognized:
f

Specify the format name. Useful if it cannot be guessed from the output name suffix.
bsfs[/spec]

Specify a list of bitstream filters to apply to the specified output.
use_fifo bool

This allows to override tee muxer use_{fifo option for individual slave muxer.
fifo_options

This allows to override tee muxer fifo_options for individual slave muxer. See [fifo}

It is possible to specify to which streams a given bitstream filter applies, by appending a stream
specifier to the option separated by /. spec must be a stream specifier (see |[Format stream specifiers]).
If the stream specifier is not specified, the bitstream filters will be applied to all streams in the output.

Several bitstream filters can be specified, separated by ",".

’

select

Select the streams that should be mapped to the slave output, specified by a stream specifier. If not
specified, this defaults to all the input streams. You may use multiple stream specifiers separated by
commas (,)e.g:a:0,v

onfail

Specify behaviour on output failure. This can be set to either abort (which is default) or ignore.
abort will cause whole process to fail in case of failure on this slave output. ignore will ignore
failure on this output, so other outputs will continue without being affected.

22.28.1 Exampleg#]

® Encode something and both archive it in a WebM file and stream it as MPEG-TS over UDP (the
streams need to be explicitly mapped):

ffmpeg -1 ... —c:v 1ibx264 -c:a mp2 —-f tee —-map O:v -map O:a
"archive—20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/"

® As above, but continue streaming even if output to local file fails (for example local drive fills up):

ffmpeg —-i ... -c:v 1libx264 -c:a mp2 -f tee -map O0:v -map O:a
"[onfail=ignore]archive—20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/"

® Use ffmpeg to encode the input, and send the output to three different destinations. The
dump_extra bitstream filter is used to add extradata information to all the output video keyframes

packets, as requested by the MPEG-TS format. The select option is applied to out . aac in order to
make it contain only audio packets.

ffmpeg -i ... —map 0 -flags +global_header -c:v 1ibx264 -c:a aac
-f tee "[bsfs/v=dump_extra]out.ts\[movflags=+faststart]out.mp4|[select=a]out.aac"

® As below, but select only stream a : 1 for the audio output. Note that a second level escaping must be

non

performed, as ":" is a special character used to separate options.

ffmpeg -i ... —map 0 -flags +global_header -c:v 1ibx264 -c:a aac
-f tee "[bsfs/v=dump_extra]out.ts\[movflags=+faststart]out.mp4|[select=\’a:l\’]out.aac"

Note: some codecs may need different options depending on the output format; the auto-detection of this
can not work with the tee muxer. The main example is the global_header flag.

22.29 webm_dash_manifest#]
WebM DASH Manifest muxer.

This muxer implements the WebM DASH Manifest specification to generate the DASH manifest XML. It
also supports manifest generation for DASH live streams.

For more information see:

® WebM DASH Specification:
lhttps://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification|
® [SO DASH Specification:
|http://standards.iso.org/ittf/Publicly AvailableStandards/c065274 ISO IEC 23009-1 2014.zip|

22.29.1 Options#[TOC

This muxer supports the following options:

adaptation_sets

This option has the following syntax: "id=x,streams=a,b,c id=y,streams=d,e" where x and y are the
unique identifiers of the adaptation sets and a,b,c,d and e are the indices of the corresponding audio
and video streams. Any number of adaptation sets can be added using this option.

live
Set this to 1 to create a live stream DASH Manifest. Default: 0.
chunk_start_index

Start index of the first chunk. This will go in the ‘startNumber’ attribute of the
‘SegmentTemplate’ element in the manifest. Default: 0.

https://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification
http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip

chunk_duration_ms

Duration of each chunk in milliseconds. This will go in the ‘duration’ attribute of the
‘SegmentTemplate’ element in the manifest. Default: 1000.

utc_timing_url

URL of the page that will return the UTC timestamp in ISO format. This will go in the ‘value’
attribute of the ‘UTCTiming’ element in the manifest. Default: None.

time_shift_buffer_depth

Smallest time (in seconds) shifting buffer for which any Representation is guaranteed to be available.
This will go in the ‘timeShiftBufferDepth’ attribute of the ‘MPD’ element. Default: 60.

minimum_update_period

Minimum update period (in seconds) of the manifest. This will go in the
‘minimumUpdatePeriod’ attribute of the ‘MPD’ element. Default: 0.

22.29.2 Example#]

ffmpeg —-f webm_dash_manifest -i videol.webm
—f webm_dash_manifest -1 video2.webm
—f webm_dash_manifest —-i audiol.webm
—f webm_dash_manifest -1 audio2.webm
-map 0 —map 1 —-map 2 -map 3 \
-c copy \
—f webm_dash_manifest \
—adaptation_sets "id=0, streams=0,1 id=1, streams=2,3" \
manifest.xml

22.30 webm_chunkf]

WebM Live Chunk Muxer.

~

This muxer writes out WebM headers and chunks as separate files which can be consumed by clients that
support WebM Live streams via DASH.

22.30.1 Options#]

This muxer supports the following options:
chunk_start_index
Index of the first chunk (defaults to 0).

header

Filename of the header where the initialization data will be written.

audio_chunk_duration

Duration of each audio chunk in milliseconds (defaults to 5000).

22.30.2 Exampléef]

ffmpeg —-f v41l2 -i /dev/videoO \

23 Metadata#|TOC

-f alsa -i hw:0 \

-map 0:0 \

—c:v libvpx-vp9 \

-s 640x360 —-keyint_min 30 —-g 30 \
—-f webm_chunk \

—header webm_live_video_360.hdr \
—chunk_start_index 1 \
webm_live_video_360_%d.chk \

-map 1:0 \

—c:a libvorbis \

-b:a 128k \

—-f webm_chunk \

—header webm_live_audio_128.hdr \
—chunk_start_index 1 \
—audio_chunk_duration 1000 \
webm_live_audio_128_%d.chk

FFmpeg is able to dump metadata from media files into a simple UTF-8-encoded INI-like text file and
then load it back using the metadata muxer/demuxer.

The file format is as follows:

AR o

A file consists of a header and a number of metadata tags divided into sections, each on its own line.
The header is a ‘; FFMETADATA’ string, followed by a version number (now 1).

Metadata tags are of the form ‘key=value’

Immediately after header follows global metadata

After global metadata there may be sections with per-stream/per-chapter metadata.

A section starts with the section name in uppercase (i.e. STREAM or CHAPTER) in brackets (‘ [,
‘1) and ends with next section or end of file.

At the beginning of a chapter section there may be an optional timebase to be used for start/end
values. It must be in form ‘TIMEBASE=num/den’, where num and den are integers. If the timebase
is missing then start/end times are assumed to be in milliseconds.

Next a chapter section must contain chapter start and end times in form ‘START=num’, ‘END=num’,
where num is a positive integer.

Empty lines and lines starting with ¢;’ or ‘#’ are ignored.
Metadata keys or values containing special characters (‘=", *;’, ‘#°, *\’ and a newline) must be
escaped with a backslash “\’.

10. Note that whitespace in metadata (e.g. ‘foo = bar’) is considered to be a part of the tag (in the
example above key is ‘foo ’, valueis ° bar’).

A ffmetadata file might look like this:

; FFMETADATAL
title=bike\\shed

;this is a comment
artist=FFmpeg troll team

[CHAPTER]
TIMEBASE=1/1000

START=0

#chapter ends at 0:01:00
END=60000

title=chapter \#1
[STREAM]

title=multi\

line

By using the ffmetadata muxer and demuxer it is possible to extract metadata from an input file to an
ffmetadata file, and then transcode the file into an output file with the edited ffmetadata file.

Extracting an ffmetadata file with £ fmpeg goes as follows:

ffmpeg —-i INPUT -f ffmetadata FFMETADATAFILE

Reinserting edited metadata information from the FFMETADATAFILE file can be done as:

ffmpeg -i INPUT -i FFMETADATAFILE -map_metadata 1 -codec copy OUTPUT

24 Protocol Options#[TOC

The libavformat library provides some generic global options, which can be set on all the protocols. In
addition each protocol may support so-called private options, which are specific for that component.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
the AVFormatContext options or using the 1ibavutil/opt .h API for programmatic use.

The list of supported options follows:

protocol_whitelist list (iInput)

Seta ","-separated list of allowed protocols. "ALL" matches all protocols. Protocols prefixed by "-"
are disabled. All protocols are allowed by default but protocols used by an another protocol (nested

protocols) are restricted to a per protocol subset.

25 Protocols#[TOC

Protocols are configured elements in FFmpeg that enable access to resources that require specific
protocols.

When you configure your FFmpeg build, all the supported protocols are enabled by default. You can list
all available ones using the configure option "—list-protocols".

You can disable all the protocols using the configure option "—disable-protocols"”, and selectively enable a
protocol using the option "—enable-protocol=PROTOCOL", or you can disable a particular protocol using
the option "—disable-protocol=PROTOCOL".

The option "-protocols” of the ff* tools will display the list of supported protocols.
All protocols accept the following options:
rw_timeout
Maximum time to wait for (network) read/write operations to complete, in microseconds.

A description of the currently available protocols follows.

25.1 asynd#[TO(]

Asynchronous data filling wrapper for input stream.

Fill data in a background thread, to decouple I/O operation from demux thread.

async:URL
async:http://host/resource
async:cache:http://host/resource

25.2 bluray#

Read BluRay playlist.
The accepted options are:
angle

BluRay angle
chapter

Start chapter (1...N)

playlist

Examples:

Read longest playlist from BluRay mounted to /mnt/bluray:

bluray:/mnt/bluray

Read angle 2 of playlist 4 from BluRay mounted to /mnt/bluray, start from chapter 2:

-playlist 4 —-angle 2 —-chapter 2 bluray:/mnt/bluray

25.3 cachdf]

Caching wrapper for input stream.

Cache the input stream to temporary file. It brings seeking capability to live streams.

cache:URL

25.4 concat#i[TOC]

Physical concatenation protocol.
Read and seek from many resources in sequence as if they were a unique resource.

A URL accepted by this protocol has the syntax:

concat:URLI|URL2|...|URLN

where URLI, URL2, ..., URLN are the urls of the resource to be concatenated, each one possibly
specifying a distinct protocol.

For example to read a sequence of files splitl.mpeq, split2.mpeg, split3.mpeg with ffplay
use the command:

ffplay concat:splitl.mpeg\|split2.mpeg\|split3.mpeg

Note that you may need to escape the character "|" which is special for many shells.

25.5 crypto#]

AES-encrypted stream reading protocol.
The accepted options are:

key

Set the AES decryption key binary block from given hexadecimal representation.
iv
Set the AES decryption initialization vector binary block from given hexadecimal representation.

Accepted URL formats:

crypto:URL
crypto+URL

25.6 data#]

Data in-line in the URI. See http://en.wikipedia.org/wiki/Data_ URI scheme]

For example, to convert a GIF file given inline with £ fmpeg:

ffmpeg -i " jDgdGiJdJIqUX02iB4E8Q9jUMKADs=" smiley.png

25.7 filefTOC]

File access protocol.
Read from or write to a file.

A file URL can have the form:

file:filename
where filename is the path of the file to read.

An URL that does not have a protocol prefix will be assumed to be a file URL. Depending on the build, an
URL that looks like a Windows path with the drive letter at the beginning will also be assumed to be a file
URL (usually not the case in builds for unix-like systems).

For example to read from a file input .mpeg with £ fmpeg use the command:
ffmpeg -i file:input.mpeg output.mpeg
This protocol accepts the following options:
truncate
Truncate existing files on write, if set to 1. A value of O prevents truncating. Default value is 1.
blocksize

Set I/0 operation maximum block size, in bytes. Default value is INT_MAX, which results in not
limiting the requested block size. Setting this value reasonably low improves user termination request
reaction time, which is valuable for files on slow medium.

http://en.wikipedia.org/wiki/Data_URI_scheme

25.8 ftpBTOC

FTP (File Transfer Protocol).
Read from or write to remote resources using FTP protocol.

Following syntax is required.

ftp://[user[:password]@]server|[:port]/path/to/remote/resource.mpeg
This protocol accepts the following options.
timeout

Set timeout in microseconds of socket I/O operations used by the underlying low level operation. By
default it is set to -1, which means that the timeout is not specified.

ftp—-anonymous—-password
Password used when login as anonymous user. Typically an e-mail address should be used.
ftp-write-seekable

Control seekability of connection during encoding. If set to 1 the resource is supposed to be seekable,
if set to 0 it is assumed not to be seekable. Default value is 0.

NOTE: Protocol can be used as output, but it is recommended to not do it, unless special care is taken
(tests, customized server configuration etc.). Different FTP servers behave in different way during seek
operation. ff* tools may produce incomplete content due to server limitations.

This protocol accepts the following options:
follow

If set to 1, the protocol will retry reading at the end of the file, allowing reading files that still are
being written. In order for this to terminate, you either need to use the rw_timeout option, or use the
interrupt callback (for API users).

25.9 gopheffiTO(]

Gopher protocol.

25.10 his#]

Read Apple HTTP Live Streaming compliant segmented stream as a uniform one. The M3US playlists
describing the segments can be remote HTTP resources or local files, accessed using the standard file
protocol. The nested protocol is declared by specifying "+proto" after the hls URI scheme name, where
proto is either "file" or "http".

hls+http://host/path/to/remote/resource.m3u8
hls+file://path/to/local/resource.m3u8

Using this protocol is discouraged - the hls demuxer should work just as well (if not, please report the
issues) and is more complete. To use the hls demuxer instead, simply use the direct URLSs to the m3u8
files.

25.11 http#TO(C]

HTTP (Hyper Text Transfer Protocol).
This protocol accepts the following options:
seekable

Control seekability of connection. If set to 1 the resource is supposed to be seekable, if set to O it is
assumed not to be seekable, if set to -1 it will try to autodetect if it is seekable. Default value is -1.

chunked_post

If set to 1 use chunked Transfer-Encoding for posts, default is 1.
content_type

Set a specific content type for the POST messages or for listen mode.
http_proxy

set HTTP proxy to tunnel through e.g. http://example.com:1234
headers

Set custom HTTP headers, can override built in default headers. The value must be a string encoding
the headers.

multiple_requests

Use persistent connections if set to 1, default is 0.
post_data

Set custom HTTP post data.
user_agent

Override the User-Agent header. If not specified the protocol will use a string describing the
libavformat build. ("Lavf/<version>")

user—-agent
This is a deprecated option, you can use user_agent instead it.
timeout

Set timeout in microseconds of socket I/O operations used by the underlying low level operation. By
default it is set to -1, which means that the timeout is not specified.

reconnect_at_eof

If set then eof is treated like an error and causes reconnection, this is useful for live / endless streams.
reconnect_streamed

If set then even streamed/non seekable streams will be reconnected on errors.
reconnect_delay_max

Sets the maximum delay in seconds after which to give up reconnecting
mime_type

Export the MIME type.
icy

If set to 1 request ICY (SHOUTCcast) metadata from the server. If the server supports this, the
metadata has to be retrieved by the application by reading the icy_metadata_headers and
icy_metadata_packet options. The default is 1.

icy_metadata_headers

If the server supports ICY metadata, this contains the ICY-specific HTTP reply headers, separated by
newline characters.

icy_metadata_packet

If the server supports ICY metadata, and icy was set to 1, this contains the last non-empty metadata
packet sent by the server. It should be polled in regular intervals by applications interested in
mid-stream metadata updates.

cookies

Set the cookies to be sent in future requests. The format of each cookie is the same as the value of a
Set-Cookie HTTP response field. Multiple cookies can be delimited by a newline character.

offset

Set initial byte offset.
end_offset
Try to limit the request to bytes preceding this offset.
method
When used as a client option it sets the HTTP method for the request.

When used as a server option it sets the HTTP method that is going to be expected from the client(s).
If the expected and the received HTTP method do not match the client will be given a Bad Request
response. When unset the HTTP method is not checked for now. This will be replaced by
autodetection in the future.

listen

If set to 1 enables experimental HTTP server. This can be used to send data when used as an output
option, or read data from a client with HTTP POST when used as an input option. If set to 2 enables
experimental multi-client HTTP server. This is not yet implemented in ffmpeg.c or ffserver.c and
thus must not be used as a command line option.

Server side (sending):
ffmpeg -1 somefile.ogg -c copy -listen 1 -f ogg http://server:port

Client side (receiving):
ffmpeg -i http://server:port —c copy somefile.ogg

Client can also be done with wget:
wget http://server:port -0 somefile.ogg

Server side (receiving):
ffmpeg -listen 1 -i http://server:port -c copy somefile.ogg

Client side (sending):
ffmpeg -i somefile.ogg -chunked_post 0 -c copy -f ogg http://server:port

Client can also be done with wget:
wget —-post-file=somefile.ogg http://server:port

25.11.1 HTTP Cookied#]

Some HTTP requests will be denied unless cookie values are passed in with the request. The cookies
option allows these cookies to be specified. At the very least, each cookie must specify a value along with
a path and domain. HTTP requests that match both the domain and path will automatically include the
cookie value in the HTTP Cookie header field. Multiple cookies can be delimited by a newline.

The required syntax to play a stream specifying a cookie is:

ffplay —-cookies "nlgptid=nltid=tsn; path=/;

25.12 Icecast]

Icecast protocol (stream to Icecast servers)

This protocol accepts the following options:

ice_genre

Set the stream genre.
ice_name

Set the stream name.
ice_description

Set the stream description.
ice_url

Set the stream website URL.

ice_public

domain=somedomain.com;" http://somedomain.com/somestream.m3u8

Set if the stream should be public. The default is O (not public).

user_agent

Override the User-Agent header. If not specified a string of the form "Lavf/<version>" will be used.

password
Set the Icecast mountpoint password.

content_type

Set the stream content type. This must be set if it is different from audio/mpeg.

legacy_icecast

This enables support for Icecast versions < 2.4.0, that do not support the HTTP PUT method but the

SOURCE method.

icecast://[usernamel:password] @] server:port/mountpoint

25.13 mmst#[TOC]

MMS (Microsoft Media Server) protocol over TCP.

25.14 mmsh#[TO(C]

MMS (Microsoft Media Server) protocol over HTTP.

The required syntax is:

mmsh://server[:port] [/appl [/playpath]

25.15 mdSH[TO(]

MDS5 output protocol.

Computes the MDS5 hash of the data to be written, and on close writes this to the designated output or
stdout if none is specified. It can be used to test muxers without writing an actual file.

Some examples follow.

Write the MD5 hash of the encoded AVI file to the file output.avi.md5.
ffmpeg —-i input.flv -f avi -y md5:output.avi.md5

Write the MD5 hash of the encoded AVI file to stdout.
ffmpeg -1 input.flv -f avi -y md5:

Note that some formats (typically MOV) require the output protocol to be seekable, so they will fail with
the MDS5 output protocol.

25.16 pipd[TOC]

UNIX pipe access protocol.

Read and write from UNIX pipes.
The accepted syntax is:

pipe: [number]

number is the number corresponding to the file descriptor of the pipe (e.g. O for stdin, 1 for stdout, 2 for
stderr). If number is not specified, by default the stdout file descriptor will be used for writing, stdin for
reading.

For example to read from stdin with £ fmpeg:

cat test.wav | ffmpeg —-i pipe:0
...this is the same as...
cat test.wav | ffmpeg —-i pipe:

For writing to stdout with £ fmpeg:

ffmpeg —-i test.wav —-f avi pipe:1l | cat > test.avi
...this is the same as...
ffmpeg —-i test.wav -f avi pipe: | cat > test.avi

This protocol accepts the following options:
blocksize

Set I/O operation maximum block size, in bytes. Default value is INT_MAX, which results in not
limiting the requested block size. Setting this value reasonably low improves user termination request
reaction time, which is valuable if data transmission is slow.

Note that some formats (typically MOV), require the output protocol to be seekable, so they will fail with
the pipe output protocol.

25.17 prompeg#]

Pro-MPEG Code of Practice #3 Release 2 FEC protocol.

The Pro-MPEG CoP#3 FEC is a 2D parity-check forward error correction mechanism for MPEG-2
Transport Streams sent over RTP.

This protocol must be used in conjunction with the rtp_mpegt s muxer and the rtp protocol.
The required syntax is:
-f rtp_mpegts -fec prompeg=option=val... rtp://hostname:port

The destination UDP ports are port + 2 for the column FEC stream and port + 4 for the row FEC
stream.

This protocol accepts the following options:
1=n

The number of columns (4-20, LxD <= 100)
d=n

The number of rows (4-20, LxD <= 100)

Example usage:

-f rtp_mpegts —-fec prompeg=1=8:d=4 rtp://hostname:port

25.18 rtmpH[TOC]

Real-Time Messaging Protocol.

The Real-Time Messaging Protocol (RTMP) is used for streaming multimedia content across a TCP/IP
network.

The required syntax is:

rtmp:// [username:password@] server[:port] [/appl [/instance] [/playpath]
The accepted parameters are:
username

An optional username (mostly for publishing).
password

An optional password (mostly for publishing).
server

The address of the RTMP server.
port

The number of the TCP port to use (by default is 1935).
app

It is the name of the application to access. It usually corresponds to the path where the application is
installed on the RTMP server (e.g. /ondemand/, /flash/live/, etc.). You can override the
value parsed from the URI through the rtmp_app option, too.

playpath

It is the path or name of the resource to play with reference to the application specified in app, may
be prefixed by "mp4:". You can override the value parsed from the URI through the
rtmp_playpath option, too.

listen
Act as a server, listening for an incoming connection.
timeout

Maximum time to wait for the incoming connection. Implies listen.

Additionally, the following parameters can be set via command line options (or in code via AVOpt ions):

rtmp_app

Name of application to connect on the RTMP server. This option overrides the parameter specified in
the URI.

rtmp_buffer
Set the client buffer time in milliseconds. The default is 3000.
rtmp_conn

Extra arbitrary AMF connection parameters, parsed from a string, e.g. like B: 1 S:authMe 0O:1
NN:code:1.23 NS:flag:ok O:0. Each value is prefixed by a single character denoting the
type, B for Boolean, N for number, S for string, O for object, or Z for null, followed by a colon. For
Booleans the data must be either 0 or 1 for FALSE or TRUE, respectively. Likewise for Objects the
data must be 0 or 1 to end or begin an object, respectively. Data items in subobjects may be named,
by prefixing the type with N’ and specifying the name before the value (i.e. NB:myFlag:1). This
option may be used multiple times to construct arbitrary AMF sequences.

rtmp_flashver

Version of the Flash plugin used to run the SWF player. The default is LNX 9,0,124,2. (When
publishing, the default is FMLE/3.0 (compatible; <libavformat version>).)

rtmp_flush_interval
Number of packets flushed in the same request (RTMPT only). The default is 10.
rtmp_live

Specify that the media is a live stream. No resuming or seeking in live streams is possible. The
default value is any, which means the subscriber first tries to play the live stream specified in the
playpath. If a live stream of that name is not found, it plays the recorded stream. The other possible
values are 1ive and recorded.

rtmp_pageurl

URL of the web page in which the media was embedded. By default no value will be sent.
rtmp_playpath

Stream identifier to play or to publish. This option overrides the parameter specified in the URI.

rtmp_subscribe

Name of live stream to subscribe to. By default no value will be sent. It is only sent if the option is
specified or if rtmp_live is set to live.

rtmp_swfhash

SHA?256 hash of the decompressed SWF file (32 bytes).
rtmp_swfsize

Size of the decompressed SWF file, required for SWFVerification.
rtmp_swfurl

URL of the SWF player for the media. By default no value will be sent.
rtmp_swfverify

URL to player swf file, compute hash/size automatically.
rtmp_tcurl

URL of the target stream. Defaults to proto://host[:port]/app.

For example to read with £ fplay a multimedia resource named "sample" from the application "vod"
from an RTMP server "myserver":

ffplay rtmp://myserver/vod/sample

To publish to a password protected server, passing the playpath and app names separately:

ffmpeg -re -i <input> -f flv -rtmp_playpath some/long/path -rtmp_app long/app/name rtmp://username:password@myserver/

25.19 rtmpd#[TOQ

Encrypted Real-Time Messaging Protocol.

The Encrypted Real-Time Messaging Protocol (RTMPE) is used for streaming multimedia content within
standard cryptographic primitives, consisting of Diffie-Hellman key exchange and HMACSHA?256,
generating a pair of RC4 keys.

25.20 rtmps#[TOC

Real-Time Messaging Protocol over a secure SSL connection.

The Real-Time Messaging Protocol (RTMPS) is used for streaming multimedia content across an
encrypted connection.

25.21 rtmpt#|TO(]

Real-Time Messaging Protocol tunneled through HTTP.

The Real-Time Messaging Protocol tunneled through HTTP (RTMPT) is used for streaming multimedia
content within HTTP requests to traverse firewalls.

25.22 rtmptefTOC

Encrypted Real-Time Messaging Protocol tunneled through HTTP.

The Encrypted Real-Time Messaging Protocol tunneled through HTTP (RTMPTE) is used for streaming
multimedia content within HTTP requests to traverse firewalls.

25.23 rtmpts#]

Real-Time Messaging Protocol tunneled through HTTPS.

The Real-Time Messaging Protocol tunneled through HTTPS (RTMPTS) is used for streaming
multimedia content within HTTPS requests to traverse firewalls.

25.24 libsmbeclient#]

libsmbclient permits one to manipulate CIFS/SMB network resources.

Following syntax is required.

smb://[[domain: Juser|[:password@]]server[/share[/path[/file]]]
This protocol accepts the following options.
timeout

Set timeout in milliseconds of socket I/O operations used by the underlying low level operation. By
default it is set to -1, which means that the timeout is not specified.

truncate
Truncate existing files on write, if set to 1. A value of O prevents truncating. Default value is 1.
workgroup

Set the workgroup used for making connections. By default workgroup is not specified.

For more information see: fhttp://www.samba.org/l

http://www.samba.org/

25.25 libssh#[TOC|

Secure File Transfer Protocol via libssh
Read from or write to remote resources using SFTP protocol.

Following syntax is required.

sftp://[user[:password]@]server|[:port]/path/to/remote/resource.mpeg
This protocol accepts the following options.
timeout

Set timeout of socket I/O operations used by the underlying low level operation. By default it is set to
-1, which means that the timeout is not specified.

truncate
Truncate existing files on write, if set to 1. A value of O prevents truncating. Default value is 1.
private_key

Specify the path of the file containing private key to use during authorization. By default libssh
searches for keys in the ~/ . ssh/ directory.

Example: Play a file stored on remote server.

ffplay sftp://user:password@server_address:22/home/user/resource.mpeg

25.26 librtmp rtmp, rtmpe, rtmps, rtmpt, rtmpte#

Real-Time Messaging Protocol and its variants supported through librtmp.

Requires the presence of the librtmp headers and library during configuration. You need to explicitly
configure the build with "—enable-librtmp". If enabled this will replace the native RTMP protocol.

This protocol provides most client functions and a few server functions needed to support RTMP, RTMP
tunneled in HTTP (RTMPT), encrypted RTMP (RTMPE), RTMP over SSL/TLS (RTMPS) and tunneled
variants of these encrypted types (RTMPTE, RTMPTS).

The required syntax is:

rtmp_proto://server[:port] [/appl [/playpath] options

non non non non non

where rtmp_proto is one of the strings "rtmp", "rtmpt", "rtmpe", "rtmps", "rtmpte", "rtmpts" corresponding
to each RTMP variant, and server, port, app and playpath have the same meaning as specified for the
RTMP native protocol. options contains a list of space-separated options of the form key=val.

See the librtmp manual page (man 3 librtmp) for more information.

For example, to stream a file in real-time to an RTMP server using f fmpeg:

ffmpeg -re -i myfile -f flv rtmp://myserver/live/mystream

To play the same stream using £fplay:

ffplay "rtmp://myserver/live/mystream live=1"

25.27 rtpi#]

Real-time Transport Protocol.
The required syntax for an RTP URL is: rtp://hostname[:port][Toption=val...]
port specifies the RTP port to use.
The following URL options are supported:
ttl=n
Set the TTL (Time-To-Live) value (for multicast only).
rtcpport=n
Set the remote RTCP port to n.
localrtpport=n
Set the local RTP port to n.
localrtcpport=n’
Set the local RTCP port to n.
pkt_size=n
Set max packet size (in bytes) to n.
connect=0]1
Do a connect () on the UDP socket (if set to 1) or not (if set to 0).
sources=1ip[, ip]
List allowed source IP addresses.

block=ipl[, ip]

List disallowed (blocked) source IP addresses.
write_to_source=0 | 1

Send packets to the source address of the latest received packet (if set to 1) or to a default remote
address (if set to 0).

localport=n

Set the local RTP port to n.

This is a deprecated option. Instead, Localrtpport should be used.
Important notes:

1. If rtcpport is not set the RTCP port will be set to the RTP port value plus 1.

2. If localrtpport (the local RTP port) is not set any available port will be used for the local RTP
and RTCP ports.

3. If localrtcpport (the local RTCP port) is not set it will be set to the local RTP port value plus 1.

25.28 rtsp]

Real-Time Streaming Protocol.

RTSP is not technically a protocol handler in libavformat, it is a demuxer and muxer. The demuxer
supports both normal RTSP (with data transferred over RTP; this is used by e.g. Apple and Microsoft) and
Real-RTSP (with data transferred over RDT).

The muxer can be used to send a stream using RTSP ANNOUNCE to a server supporting it (currently
Darwin Streaming Server and Mischa Spiegelmock’s|RTSP server).

The required syntax for a RTSP url is:

rtsp://hostnamel:port]/path

Options can be set on the £ fmpeg/ffplay command line, or set in code via AVOptions or in
avformat_open_input.

The following options are supported.
initial_pause

Do not start playing the stream immediately if set to 1. Default value is 0.
rtsp_transport

Set RTSP transport protocols.

https://github.com/revmischa/rtsp-server

It accepts the following values:
‘udp’
Use UDP as lower transport protocol.
‘tcp’
Use TCP (interleaving within the RTSP control channel) as lower transport protocol.
‘udp_multicast’
Use UDP multicast as lower transport protocol.
‘http’

Use HTTP tunneling as lower transport protocol, which is useful for passing proxies.

Multiple lower transport protocols may be specified, in that case they are tried one at a time (if the
setup of one fails, the next one is tried). For the muxer, only the ‘t cp’ and ‘udp’ options are
supported.

rtsp_flags
Set RTSP flags.
The following values are accepted:
‘filter_src’
Accept packets only from negotiated peer address and port.
‘listen’
Act as a server, listening for an incoming connection.
‘prefer_tcp’
Try TCP for RTP transport first, if TCP is available as RTSP RTP transport.
Default value is ‘none’.
allowed_media_types
Set media types to accept from the server.

The following flags are accepted:

‘video’
‘audio’
‘data’
By default it accepts all media types.
min_port
Set minimum local UDP port. Default value is 5000.
max_port
Set maximum local UDP port. Default value is 65000.
timeout
Set maximum timeout (in seconds) to wait for incoming connections.
A value of -1 means infinite (default). This option implies the rtsp_flags setto ‘listen’.
reorder_queue_size
Set number of packets to buffer for handling of reordered packets.
stimeout
Set socket TCP I/O timeout in microseconds.
user—-agent
Override User-Agent header. If not specified, it defaults to the libavformat identifier string.

When receiving data over UDP, the demuxer tries to reorder received packets (since they may arrive out
of order, or packets may get lost totally). This can be disabled by setting the maximum demuxing delay to
zero (via the max_delay field of AVFormatContext).

When watching multi-bitrate Real-RTSP streams with £ fplay, the streams to display can be chosen with
-vst n and —ast n for video and audio respectively, and can be switched on the fly by pressing v and a.

25.28.1 Examples#|TOC|

The following examples all make use of the ffplay and £ fmpeq tools.

® Watch a stream over UDP, with a max reordering delay of 0.5 seconds:
ffplay -max_delay 500000 -rtsp_transport udp rtsp://server/video.mp4

® Watch a stream tunneled over HTTP:

ffplay -rtsp_transport http rtsp://server/video.mp4
® Send a stream in realtime to a RTSP server, for others to watch:

ffmpeg -re -i input -f rtsp -muxdelay 0.1 rtsp://server/live.sdp
® Receive a stream in realtime:

ffmpeg -rtsp_flags listen -i rtsp://ownaddress/live.sdp output

25.29 sap#{[TOC]

Session Announcement Protocol (RFC 2974). This is not technically a protocol handler in libavformat, it
is a muxer and demuxer. It is used for signalling of RTP streams, by announcing the SDP for the streams
regularly on a separate port.

25.29.1 Muxerff TOQ

The syntax for a SAP url given to the muxer is:
sap://destination|:port] [?options]

The RTP packets are sent to destination on port port, or to port 5004 if no port is specified. options is a
&-separated list. The following options are supported:

announce_addr=address

Specify the destination IP address for sending the announcements to. If omitted, the announcements
are sent to the commonly used SAP announcement multicast address 224.2.127.254 (sap.mcast.net),
or ff0e::2:7ffe if destination is an IPv6 address.

announce_port=port

Specify the port to send the announcements on, defaults to 9875 if not specified.
ttl=ttl

Specify the time to live value for the announcements and RTP packets, defaults to 255.
same_port=0]1

If set to 1, send all RTP streams on the same port pair. If zero (the default), all streams are sent on
unique ports, with each stream on a port 2 numbers higher than the previous. VLC/Live555 requires
this to be set to 1, to be able to receive the stream. The RTP stack in libavformat for receiving
requires all streams to be sent on unique ports.

Example command lines follow.

To broadcast a stream on the local subnet, for watching in VLC:
ffmpeg -re -i input —-f sap sap://224.0.0.255%same_port=1
Similarly, for watching in ffplay:

ffmpeg -re -i input —-f sap sap://224.0.0.255

And for watching in £fplay, over IPv6:

ffmpeg -re —-i input —-f sap sap://[ff0e::1:2:3:4]

25.29.2 DemuxerffTOC

The syntax for a SAP url given to the demuxer is:

sap://[address] [:port]

address is the multicast address to listen for announcements on, if omitted, the default 224.2.127.254
(sap.mcast.net) is used. port is the port that is listened on, 9875 if omitted.

The demuxers listens for announcements on the given address and port. Once an announcement is
received, it tries to receive that particular stream.

Example command lines follow.

To play back the first stream announced on the normal SAP multicast address:

ffplay sap://

To play back the first stream announced on one the default IPv6 SAP multicast address:

ffplay sap://[ffOe::2:7ffe]

25.30 sctp#[TOC

Stream Control Transmission Protocol.

The accepted URL syntax is:

sctp://host:port[?2options]
The protocol accepts the following options:
listen
If set to any value, listen for an incoming connection. Outgoing connection is done by default.

max_streams

Set the maximum number of streams. By default no limit is set.

25.31 srtp#[TOCQ

Secure Real-time Transport Protocol.
The accepted options are:

srtp_in_suite
srtp_out_suite

Select input and output encoding suites.
Supported values:

‘AES_CM_128_HMAC_SHA1l_80’
‘SRTP_AES128_ CM_HMAC_SHAl_ 80’
‘AES_CM_128_ HMAC_SHA1l_ 32’
‘SRTP_AES128_ CM_HMAC_SHAl 32’
srtp_in_params
srtp_out_params

Set input and output encoding parameters, which are expressed by a base64-encoded representation
of a binary block. The first 16 bytes of this binary block are used as master key, the following 14
bytes are used as master salt.

25.32 subfiléfTOC

Virtually extract a segment of a file or another stream. The underlying stream must be seekable.
Accepted options:
start
Start offset of the extracted segment, in bytes.
end
End offset of the extracted segment, in bytes.
Examples:

Extract a chapter from a DVD VOB file (start and end sectors obtained externally and multiplied by
2048):

subfile,,start,153391104,end, 268142592, , : /media/dvd/VIDEO_TS/VTS_08_1.VOB

Play an AVI file directly from a TAR archive:

subfile,,start,183241728,end,366490624,, :archive.tar

25.33 tedf[TOC]

Writes the output to multiple protocols. The individual outputs are separated by |

tee:file://path/to/local/this.avi|file://path/to/local/that.avi

25.34 tepfTOQ

Transmission Control Protocol.

The required syntax for a TCP url is:

tcp://hostname:port[?options]
options contains a list of &-separated options of the form key=val.
The list of supported options follows.
listen=1|0

Listen for an incoming connection. Default value is O.
timeout=microseconds

Set raise error timeout, expressed in microseconds.

This option is only relevant in read mode: if no data arrived in more than this time interval, raise
error.

listen_timeout=milliseconds

Set listen timeout, expressed in milliseconds.
recv_buffer size=bytes

Set receive buffer size, expressed bytes.
send_buffer_ size=bytes

Set send buffer size, expressed bytes.

The following example shows how to setup a listening TCP connection with f fmpeg, which is then
accessed with ffplay:

ffmpeg —-i input —-f format tcp://hostname:port?listen
ffplay tcp://hostname:port

25.35 tifi[TO(Q

Transport Layer Security (TLS) / Secure Sockets Layer (SSL)

The required syntax for a TLS/SSL url is:

tls://hostname:port|[?options]

The following parameters can be set via command line options (or in code via AVOptions):
ca_file, cafile=filename

A file containing certificate authority (CA) root certificates to treat as trusted. If the linked TLS
library contains a default this might not need to be specified for verification to work, but not all
libraries and setups have defaults built in. The file must be in OpenSSL PEM format.

tls_verify=1|0

If enabled, try to verify the peer that we are communicating with. Note, if using OpenSSL, this
currently only makes sure that the peer certificate is signed by one of the root certificates in the CA
database, but it does not validate that the certificate actually matches the host name we are trying to
connect to. (With GnuTLS, the host name is validated as well.)

This is disabled by default since it requires a CA database to be provided by the caller in many cases.
cert_file, cert=filename

A file containing a certificate to use in the handshake with the peer. (When operating as server, in
listen mode, this is more often required by the peer, while client certificates only are mandated in
certain setups.)

key_file, key=filename
A file containing the private key for the certificate.
listen=1]|0

If enabled, listen for connections on the provided port, and assume the server role in the handshake
instead of the client role.

Example command lines:

To create a TLS/SSL server that serves an input stream.

ffmpeg -i input —-f format tls://hostname:port?listen&cert=server.crt&key=server.key

To play back a stream from the TLS/SSL server using ffplay:

ffplay tls://hostname:port

25.36 udp#|TOC]

User Datagram Protocol.

The required syntax for an UDP URL is:

udp://hostname:port[?options]
options contains a list of &-separated options of the form key=val.

In case threading is enabled on the system, a circular buffer is used to store the incoming data, which
allows one to reduce loss of data due to UDP socket buffer overruns. The fifo_size and overrun_nonfatal
options are related to this buffer.

The list of supported options follows.
buffer_size=size

Set the UDP maximum socket buffer size in bytes. This is used to set either the receive or send buffer
size, depending on what the socket is used for. Default is 64KB. See also fifo_size.

bitrate=bitrate

If set to nonzero, the output will have the specified constant bitrate if the input has enough packets to
sustain it.

burst_bits=bits

When using bitrate this specifies the maximum number of bits in packet bursts.
localport=port

Override the local UDP port to bind with.
localaddr=addr

Choose the local IP address. This is useful e.g. if sending multicast and the host has multiple
interfaces, where the user can choose which interface to send on by specifying the IP address of that
interface.

pkt_size=size

Set the size in bytes of UDP packets.
reuse=1]0

Explicitly allow or disallow reusing UDP sockets.
ttl=ttl

Set the time to live value (for multicast only).
connect=1|0

Initialize the UDP socket with connect () . In this case, the destination address can’t be changed
with ff_udp_set_remote_url later. If the destination address isn’t known at the start, this option can be
specified in ff_udp_set_remote_url, too. This allows finding out the source address for the packets
with getsockname, and makes writes return with AVERROR(ECONNREFUSED) if "destination
unreachable” is received. For receiving, this gives the benefit of only receiving packets from the
specified peer address/port.

sources=address|[, address]

Only receive packets sent to the multicast group from one of the specified sender IP addresses.
block=address|[, address]

Ignore packets sent to the multicast group from the specified sender IP addresses.
fifo_size=units

Set the UDP receiving circular buffer size, expressed as a number of packets with size of 188 bytes.
If not specified defaults to 7*4096.

overrun_nonfatal=1 | 0

Survive in case of UDP receiving circular buffer overrun. Default value is 0.
timeout=microseconds

Set raise error timeout, expressed in microseconds.

This option is only relevant in read mode: if no data arrived in more than this time interval, raise
error.

broadcast=1]|0
Explicitly allow or disallow UDP broadcasting.

Note that broadcasting may not work properly on networks having a broadcast storm protection.

25.36.1 Examples#|TOC

® Use ffmpeg to stream over UDP to a remote endpoint:
ffmpeg -i input -f format udp://hostname:port

® Use ffmpeg to stream in mpegts format over UDP using 188 sized UDP packets, using a large input
buffer:

ffmpeg —-i input —-f mpegts udp://hostname:port?pkt_size=188s&buffer_size=65535
® Use ffmpeg to receive over UDP from a remote endpoint:

ffmpeg -i udp://[multicast-address]:port ...

25.37 unix#]

Unix local socket

The required syntax for a Unix socket URL is:

unix://filepath
The following parameters can be set via command line options (or in code via AVOptions):
timeout
Timeout in ms.
listen

Create the Unix socket in listening mode.

26 Device Options#TOC

The libavdevice library provides the same interface as libavformat. Namely, an input device is considered
like a demuxer, and an output device like a muxer, and the interface and generic device options are the
same provided by libavformat (see the ffmpeg-formats manual).

In addition each input or output device may support so-called private options, which are specific for that
component.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
the device AVFormatContext options or using the 1ibavutil/opt .h API for programmatic use.

27 Input DevicesfiTOC

Input devices are configured elements in FFmpeg which enable accessing the data coming from a
multimedia device attached to your system.

When you configure your FFmpeg build, all the supported input devices are enabled by default. You can
list all available ones using the configure option "—list-indevs".

You can disable all the input devices using the configure option "—disable-indevs", and selectively enable
an input device using the option "—enable-indev=INDEV", or you can disable a particular input device
using the option "—disable-indev=INDEV".

The option "-devices" of the ff* tools will display the list of supported input devices.

A description of the currently available input devices follows.

27.1 alsa#f

ALSA (Advanced Linux Sound Architecture) input device.
To enable this input device during configuration you need libasound installed on your system.

This device allows capturing from an ALSA device. The name of the device to capture has to be an ALSA
card identifier.

An ALSA identifier has the syntax:

hw: CARD[, DEV[, SUBDEV] |
where the DEV and SUBDEV components are optional.

The three arguments (in order: CARD,DEV,SUBDEV) specify card number or identifier, device number
and subdevice number (-1 means any).

To see the list of cards currently recognized by your system check the files /proc/asound/cards and
/proc/asound/devices.

For example to capture with £ fmpeg from an ALSA device with card id 0, you may run the command:

ffmpeg -f alsa -i hw:0 alsaout.wav

For more information see: |http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html|

27.1.1 Optiongf|[TOC]

sample_rate

http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html

Set the sample rate in Hz. Default is 48000.
channels

Set the number of channels. Default is 2.

27.2 avfoundationf]

AVFoundation input device.

AVFoundation is the currently recommended framework by Apple for streamgrabbing on OSX >=10.7 as
well as on i0S.

The input filename has to be given in the following syntax:

—-i "[[VIDEO]: [AUDIO]]"

The first entry selects the video input while the latter selects the audio input. The stream has to be
specified by the device name or the device index as shown by the device list. Alternatively, the video
and/or audio input device can be chosen by index using the —video_device_index <INDEX>
and/or —audio_device_index <INDEX>, overriding any device name or index given in the input
filename.

All available devices can be enumerated by using —~1ist_devices true, listing all device names and
corresponding indices.

There are two device name aliases:
default

Select the AVFoundation default device of the corresponding type.
none

Do not record the corresponding media type. This is equivalent to specifying an empty device name
or index.

27.2.1 Options#]

AVFoundation supports the following options:
-list_devices <TRUE|FALSE>
If set to true, a list of all available input devices is given showing all device names and indices.

-video_device_index <INDEX>

Specify the video device by its index. Overrides anything given in the input filename.

—audio_device_index <INDEX>

Specify the audio device by its index. Overrides anything given in the input filename.

-pixel_format <FORMAT>

Request the video device to use a specific pixel format. If the specified format is not supported, a list
of available formats is given and the first one in this list is used instead. Available pixel formats are:
monob, rgb555be, rgb555le, rgb565be, rgb565le, rgb24, bgr24, Orgb,
bgr0, Obgr, rgb0, bgr48be, uyvy422, yuvadddp, yuvadddplele, yuvidiidp,
yuv422pl6, yuv422pl0, yuv444pl0, yuv420p, nvl2, yuyv422, gray

—framerate

Set the grabbing frame rate. Default is nt sc, corresponding to a frame rate of 30000/1001.

-video_size

Set the video frame size.

—capture_cursor

Capture the mouse pointer. Default is 0.

—capture_mouse_clicks

Capture the screen mouse clicks. Default is 0.

27.2.2 Examples#]

Print the list of AVFoundation supported devices and exit:

$ ffmpeg -f avfoundation -list_devices true -i ""

Record video from video device 0 and audio from audio device O into out.avi:
$ ffmpeg -f avfoundation -i "0:0" out.avi

Record video from video device 2 and audio from audio device 1 into out.avi:
$ ffmpeg —-f avfoundation -video_device_index 2 —-i ":1" out.avi

Record video from the system default video device using the pixel format bgrO and do not record any
audio into out.avi:

$ ffmpeg -f avfoundation -pixel_format bgr0 -i "default:none" out.avi

27.3 bktfTO(C

BSD video input device.

27.3.1 Options#]

framerate

Set the frame rate.
video_size

Set the video frame size. Default is vga.
standard

Available values are:

3 ’

pal
‘ntsc’
‘secam’
‘paln’
‘palm’
‘ntscy’

27.4 decklink#[TOC

The decklink input device provides capture capabilities for Blackmagic DeckLink devices.

To enable this input device, you need the Blackmagic DeckLink SDK and you need to configure with the
appropriate ——extra-cflags and ——extra-1dflags. On Windows, you need to run the IDL files
through widl.

DeckLink is very picky about the formats it supports. Pixel format of the input can be set with
raw_format. Framerate and video size must be determined for your device with —1ist_formats 1.
Audio sample rate is always 48 kHz and the number of channels can be 2, 8 or 16. Note that all audio
channels are bundled in one single audio track.

27.4.1 Options#]

list_devices
If set to t rue, print a list of devices and exit. Defaults to false.

list_formats

If set to t rue, print a list of supported formats and exit. Defaults to false.
format_code <FourCC>

This sets the input video format to the format given by the FourCC. To see the supported values of
your device(s) use List_formats. Note that there is a FourCC ' pal ’ that can also be used as
pal (3 letters).

bm_v210

This is a deprecated option, you can use raw_format instead. If set to ‘1’, video is captured in 10
bit v210 instead of uyvy422. Not all Blackmagic devices support this option.

raw_format
Set the pixel format of the captured video. Available values are:
‘uyvy422’
‘yuv422pl0’
‘argb’
‘bgra’
‘rgbl10’

teletext_lines

If set to nonzero, an additional teletext stream will be captured from the vertical ancillary data. Both
SD PAL (576i) and HD (1080i or 1080p) sources are supported. In case of HD sources, OP47 packets
are decoded.

This option is a bitmask of the SD PAL VBI lines captured, specifically lines 6 to 22, and lines 318 to
335. Line 6 is the LSB in the mask. Selected lines which do not contain teletext information will be
ignored. You can use the special all constant to select all possible lines, or standard to skip lines
6, 318 and 319, which are not compatible with all receivers.

For SD sources, ffmpeg needs to be compiled with ——enable-1ibzvbi. For HD sources, on older
(pre-4K) DeckLink card models you have to capture in 10 bit mode.

channels

Defines number of audio channels to capture. Must be ‘2°, ‘8’ or ‘16’. Defaults to ‘2°.
duplex_mode

Sets the decklink device duplex mode. Must be ‘unset’, ‘half’ or ‘full’. Defaults to ‘unset’.
video_input

Sets the video input source. Must be ‘unset’, ‘sdi’, ‘hdmi’, ‘optical_sdi’, ‘component’,
‘composite’ or ‘s_video’. Defaults to ‘unset’.

audio_input

Sets the audio input source. Must be ‘unset’, ‘embedded’, ‘aes_ebu’, ‘analog’,
‘analog_x1r’, ‘analog_rca’ or ‘microphone’. Defaults to ‘unset’.

video_pts

Sets the video packet timestamp source. Must be ‘video’, ‘audio’, ‘reference’ or
‘wallclock’. Defaults to ‘video’.

audio_pts

Sets the audio packet timestamp source. Must be ‘video’, ‘audio’, ‘reference’ or
‘wallclock’. Defaults to ‘audio’.

draw_bars
If set to ‘true’, color bars are drawn in the event of a signal loss. Defaults to ‘t rue’.
queue_size

Sets maximum input buffer size in bytes. If the buffering reaches this value, incoming frames will be
dropped. Defaults to ‘1073741824".

27.4.2 Examples#[TOC]

® List input devices:
ffmpeg —-f decklink -list_devices 1 -i dummy
® List supported formats:
ffmpeg —-f decklink -list_formats 1 -i ’'Intensity Pro’
® Capture video clip at 1080i50:
ffmpeg —-format_code Hi50 -f decklink -i ’'Intensity Pro’ -c:a copy —-c:v copy output.avi

® Capture video clip at 1080150 10 bit:

ffmpeg -bm_v210 1 -format_code Hi50 -f decklink -i ’'UltraStudio Mini Recorder’ -c:a copy —-c:v copy output.avi

® Capture video clip at 1080150 with 16 audio channels:

ffmpeg —-channels 16 —-format_code Hi50 —-f decklink -i ’UltraStudio Mini Recorder’ -c:a copy -c:v copy output.avi

27.5 kmsgrab#[TOC

KMS video input device.

Captures the KMS scanout framebuffer associated with a specified CRTC or plane as a DRM object that
can be passed to other hardware functions.

Requires either DRM master or CAP_SYS_ADMIN to run.

If you don’t understand what all of that means, you probably don’t want this. Look at x11grab instead.

27.5.1 Options#]

device

DRM device to capture on. Defaults to /dev/dri/card0.
format

Pixel format of the framebuffer. Defaults to bgr0.
format_modifier

Format modifier to signal on output frames. This is necessary to import correctly into some APIs, but
can’t be autodetected. See the libdrm documentation for possible values.

crtc_id
KMS CRTC ID to define the capture source. The first active plane on the given CRTC will be used.
plane_id

KMS plane ID to define the capture source. Defaults to the first active plane found if neither
crtc_idnor plane_id are specified.

framerate

Framerate to capture at. This is not synchronised to any page flipping or framebuffer changes - it just
defines the interval at which the framebuffer is sampled. Sampling faster than the framebuffer update
rate will generate independent frames with the same content. Defaults to 30.

27.5.2 Examples#[TOC]

® Capture from the first active plane, download the result to normal frames and encode. This will only
work if the framebuffer is both linear and mappable - if not, the result may be scrambled or fail to
download.

ffmpeg —-f kmsgrab -i - -vf ’'hwdownload, format=bgr0’ output.mp4

® Capture from CRTC ID 42 at 60fps, map the result to VAAPI, convert to NV12 and encode as H.264.

ffmpeg -crtc_id 42 -framerate 60 —f kmsgrab -i - -vf ’hwmap=derive_device=vaapi,scale_vaapi=w=1920:h=1080:format=nv12’ -c:v h264_vaapi output.mp4

27.6 libndi_newtek#]

The libndi_newtek input device provides capture capabilities for using NDI (Network Device Interface,
standard created by NewTek).

Input filename is a NDI source name that could be found by sending -find_sources 1 to command line - it
has no specific syntax but human-readable formatted.

To enable this input device, you need the NDI SDK and you need to configure with the appropriate
——extra-cflags and ——extra-1dflags.

27.6.1 Optionsf[TOC

find_sources

If set to t rue, print a list of found/available NDI sources and exit. Defaults to false.
walt_sources

Override time to wait until the number of online sources have changed. Defaults to 0. 5.
allow_video_fields

When this flag is false, all video that you receive will be progressive. Defaults to t rue.

27.6.2 Examples#[TOC]

® List input devices:
ffmpeg —-f libndi_newtek -find_sources 1 -i dummy

® Restream to NDI:

ffmpeg -f libndi_newtek -i "DEV-5.INTERNAL.MI1STEREO.TV (NDI_SOURCE_NAME_1)" -f libndi_newtek -y NDI_SOURCE_NAME_2

27.7 dshowi]

Windows DirectShow input device.

DirectShow support is enabled when FFmpeg is built with the mingw-w64 project. Currently only audio
and video devices are supported.

Multiple devices may be opened as separate inputs, but they may also be opened on the same input, which
should improve synchronism between them.

The input name should be in the format:

TYPE=NAME | : TYPE=NAME]

where TYPE can be either audio or video, and NAME is the device’s name or alternative name..

27.7.1 Options#]

If no options are specified, the device’s defaults are used. If the device does not support the requested
options, it will fail to open.

video_size
Set the video size in the captured video.
framerate
Set the frame rate in the captured video.
sample_rate
Set the sample rate (in Hz) of the captured audio.
sample_size
Set the sample size (in bits) of the captured audio.
channels
Set the number of channels in the captured audio.
list_devices
If set to t rue, print a list of devices and exit.
list_options
If set to t rue, print a list of selected device’s options and exit.
video_device_number
Set video device number for devices with the same name (starts at 0, defaults to 0).
audio_device_number
Set audio device number for devices with the same name (starts at 0, defaults to 0).
pixel_format

Select pixel format to be used by DirectShow. This may only be set when the video codec is not set
or set to rawvideo.

audio_buffer_ size

Set audio device buffer size in milliseconds (which can directly impact latency, depending on the
device). Defaults to using the audio device’s default buffer size (typically some multiple of 500ms).
Setting this value too low can degrade performance. See also
|http://msdn.microsoft.com/en-us/library/windows/desktop/dd377582(v=vs.85).aspx|

video_pin_name

Select video capture pin to use by name or alternative name.
audio_pin_name

Select audio capture pin to use by name or alternative name.
crossbar_video_input_pin_number

Select video input pin number for crossbar device. This will be routed to the crossbar device’s Video
Decoder output pin. Note that changing this value can affect future invocations (sets a new default)
until system reboot occurs.

crossbar_audio_input_pin_number

Select audio input pin number for crossbar device. This will be routed to the crossbar device’s Audio
Decoder output pin. Note that changing this value can affect future invocations (sets a new default)
until system reboot occurs.

show_video_device_dialog

If set to t rue, before capture starts, popup a display dialog to the end user, allowing them to change
video filter properties and configurations manually. Note that for crossbar devices, adjusting values in
this dialog may be needed at times to toggle between PAL (25 fps) and NTSC (29.97) input frame
rates, sizes, interlacing, etc. Changing these values can enable different scan rates/frame rates and
avoiding green bars at the bottom, flickering scan lines, etc. Note that with some devices, changing
these properties can also affect future invocations (sets new defaults) until system reboot occurs.

show_audio_device_dialog

If set to t rue, before capture starts, popup a display dialog to the end user, allowing them to change
audio filter properties and configurations manually.

show_video_crossbar_connection_dialog

If set to t rue, before capture starts, popup a display dialog to the end user, allowing them to
manually modify crossbar pin routings, when it opens a video device.

show_audio_crossbar_connection_dialog

http://msdn.microsoft.com/en-us/library/windows/desktop/dd377582�v=vs.85�.aspx

If set to t rue, before capture starts, popup a display dialog to the end user, allowing them to
manually modify crossbar pin routings, when it opens an audio device.

show_analog_tv_tuner_dialog

If set to t rue, before capture starts, popup a display dialog to the end user, allowing them to
manually modify TV channels and frequencies.

show_analog_tv_tuner_audio_dialog

If set to t rue, before capture starts, popup a display dialog to the end user, allowing them to
manually modify TV audio (like mono vs. stereo, Language A,B or C).

audio_device_load

Load an audio capture filter device from file instead of searching it by name. It may load additional
parameters too, if the filter supports the serialization of its properties to. To use this an audio capture
source has to be specified, but it can be anything even fake one.

audio_device_save

Save the currently used audio capture filter device and its parameters (if the filter supports it) to a file.
If a file with the same name exists it will be overwritten.

video_device_load

Load a video capture filter device from file instead of searching it by name. It may load additional
parameters too, if the filter supports the serialization of its properties to. To use this a video capture
source has to be specified, but it can be anything even fake one.

video_device_save

Save the currently used video capture filter device and its parameters (if the filter supports it) to a file.
If a file with the same name exists it will be overwritten.

27.7.2 Examples#]

® Print the list of DirectShow supported devices and exit:
$ ffmpeg -list_devices true —-f dshow —-i dummy
® Open video device Camera:
$ ffmpeg —-f dshow -i video="Camera"
® Open second video device with name Camera:
$ ffmpeg —-f dshow -video_device_number 1 —-i video="Camera"

® Open video device Camera and audio device Microphone:

$ ffmpeg —-f dshow —-i video="Camera":audio="Microphone"
® Print the list of supported options in selected device and exit:
$ ffmpeg -list_options true -f dshow -i video="Camera"

® Specify pin names to capture by name or alternative name, specify alternative device name:

s ffmpeg ~f dshow -audio_pin name "Audio Out® -video_ pin name 2 -i video=video="gdevice pnp_\\?\peilven ladasdev_62004subsys_62021461arev_01¥45e2c7dd6s0400e1 (65e8773d-8E56-11d0-a3b9-00a0c9223196}\ (cad65100-deb0-4d59-818£-8c477184adE6) " saudio="Nicrophone”

® Configure a crossbar device, specifying crossbar pins, allow user to adjust video capture properties at
startup:

$ ffmpeg —-f dshow -show_video_device_dialog true -crossbar_video_input_pin_number 0
—crossbar_audio_input_pin_number 3 -i video="AVerMedia BDA Analog Capture":audio="AVerMedia BDA Analog Capture"

27.8 fhdevif]

Linux framebuffer input device.

The Linux framebuffer is a graphic hardware-independent abstraction layer to show graphics on a
computer monitor, typically on the console. It is accessed through a file device node, usually /dev/£b0.

For more detailed information read the file Documentation/fb/framebuffer.txt included in the Linux source
tree.

See also |http://linux-fbdev.sourceforge.net/| and fbset(1).

To record from the framebuffer device /dev/£fb0 with £ffmpeg:

ffmpeg —-f fbdev —-framerate 10 —-i /dev/fb0 out.avi

You can take a single screenshot image with the command:

ffmpeg —-f fbdev —-framerate 1 —-i /dev/fb0 —-frames:v 1 screenshot.jpeg

27.8.1 Options#]

framerate

Set the frame rate. Default is 25.

27.9 gdigrabff]

Win32 GDI-based screen capture device.
This device allows you to capture a region of the display on Windows.

There are two options for the input filename:

http://linux-fbdev.sourceforge.net/

desktop
or
title=window_title

The first option will capture the entire desktop, or a fixed region of the desktop. The second option will
instead capture the contents of a single window, regardless of its position on the screen.

For example, to grab the entire desktop using £ fmpeg:

ffmpeg —-f gdigrab —-framerate 6 —-i desktop out.mpg

Grab a 640x480 region at position 10, 20:

ffmpeg -f gdigrab —-framerate 6 -offset_x 10 -offset_y 20 -video_size vga -i desktop out.mpg

Grab the contents of the window named "Calculator”

ffmpeg —-f gdigrab —-framerate 6 -i title=Calculator out.mpg

27.9.1 Options#]

draw_mouse

Specify whether to draw the mouse pointer. Use the value 0 to not draw the pointer. Default value is
1.

framerate

Set the grabbing frame rate. Default value is nt sc, corresponding to a frame rate of 30000/1001.
show_region

Show grabbed region on screen.

If show_region is specified with 1, then the grabbing region will be indicated on screen. With this
option, it is easy to know what is being grabbed if only a portion of the screen is grabbed.

Note that show_region is incompatible with grabbing the contents of a single window.

For example:

ffmpeg —-f gdigrab -show_region 1 —-framerate 6 -video_size cif -offset_x 10 -offset_y 20 -i desktop out.mpg

video_size

Set the video frame size. The default is to capture the full screen if desktop is selected, or the full
window size if title=window_titleis selected.

offset_x
When capturing a region with video_size, set the distance from the left edge of the screen or desktop.

Note that the offset calculation is from the top left corner of the primary monitor on Windows. If you
have a monitor positioned to the left of your primary monitor, you will need to use a negative offset_x
value to move the region to that monitor.

offset_y
When capturing a region with video_size, set the distance from the top edge of the screen or desktop.

Note that the offset calculation is from the top left corner of the primary monitor on Windows. If you
have a monitor positioned above your primary monitor, you will need to use a negative offset_y value
to move the region to that monitor.

27.10 iec61883HTO(

FireWire DV/HDV input device using libiec61883.

To enable this input device, you need libiec61883, libraw1394 and libavc1394 installed on your system.
Use the configure option ——enable-1ibiec61883 to compile with the device enabled.

The iec61883 capture device supports capturing from a video device connected via IEEE1394 (FireWire),
using libiec61883 and the new Linux FireWire stack (juju). This is the default DV/HDV input method in
Linux Kernel 2.6.37 and later, since the old FireWire stack was removed.

Specify the FireWire port to be used as input file, or "auto" to choose the first port connected.

27.10.1 Options#[TOC

dvtype

Override autodetection of DV/HDYV. This should only be used if auto detection does not work, or if
usage of a different device type should be prohibited. Treating a DV device as HDV (or vice versa)
will not work and result in undefined behavior. The values aut o, dv and hdv are supported.

dvbuffer

Set maximum size of buffer for incoming data, in frames. For DV, this is an exact value. For HDV, it
is not frame exact, since HDV does not have a fixed frame size.

dvguid

Select the capture device by specifying its GUID. Capturing will only be performed from the
specified device and fails if no device with the given GUID is found. This is useful to select the input
if multiple devices are connected at the same time. Look at /sys/bus/firewire/devices to find out the
GUIDs.

27.10.2 Examples#]
® Grab and show the input of a FireWire DV/HDV device.

ffplay —-f iec61883 —-i auto

® Grab and record the input of a FireWire DV/HDV device, using a packet buffer of 100000 packets if
the source is HDV.

ffmpeg —-f i1iec61883 —-i auto —-hdvbuffer 100000 out.mpg

27.11 jack#[TOC

JACK input device.
To enable this input device during configuration you need libjack installed on your system.

A JACK input device creates one or more JACK writable clients, one for each audio channel, with name
client_name:input_N, where client_name is the name provided by the application, and N is a number
which identifies the channel. Each writable client will send the acquired data to the FFmpeg input device.

Once you have created one or more JACK readable clients, you need to connect them to one or more
JACK writable clients.

To connect or disconnect JACK clients you can use the jack_connect and jack_disconnect
programs, or do it through a graphical interface, for example with gjackctl.

To list the JACK clients and their properties you can invoke the command jack_1lsp.

Follows an example which shows how to capture a JACK readable client with £ fmpeg.

Create a JACK writable client with name "ffmpeg".
$ ffmpeg -f jack -i ffmpeg -y out.wav

Start the sample jack_metro readable client.
$ jack_metro -b 120 -d 0.2 —-f 4000

List the current JACK clients.
$ jack_lsp -c

system:capture_1
system:capture_2
system:playback_1
system:playback_2

ffmpeg:input_1

metro:120_bpm

Connect metro to the ffmpeg writable client.
$ jack_connect metro:120_bpm ffmpeg:input_1

For more information read: fhttp://jackaudio.org/|

http://jackaudio.org/

27.11.1 Optiong#TOC

channels

Set the number of channels. Default is 2.

27.12 lavii#[TO(]

Libavfilter input virtual device.
This input device reads data from the open output pads of a libavfilter filtergraph.

For each filtergraph open output, the input device will create a corresponding stream which is mapped to
the generated output. Currently only video data is supported. The filtergraph is specified through the
option graph.

27.12.1 Options#]
graph

Specify the filtergraph to use as input. Each video open output must be labelled by a unique string of
the form "outN", where N is a number starting from 0 corresponding to the mapped input stream
generated by the device. The first unlabelled output is automatically assigned to the "out0" label, but
all the others need to be specified explicitly.

The suffix "+subcc” can be appended to the output label to create an extra stream with the closed
captions packets attached to that output (experimental; only for EIA-608 / CEA-708 for now). The
subcc streams are created after all the normal streams, in the order of the corresponding stream. For

non

example, if there is "out19+subcc”, "out7+subcc” and up to "outd42", the stream #43 is subcc for
stream #7 and stream #44 is subcc for stream #19.

If not specified defaults to the filename specified for the input device.
graph_file

Set the filename of the filtergraph to be read and sent to the other filters. Syntax of the filtergraph is
the same as the one specified by the option graph.

dumpgraph

Dump graph to stderr.

27.12.2 Examples#]

® C(reate a color video stream and play it back with £fplay:

ffplay —-f lavfi -graph "color=c=pink [outO]" dummy

As the previous example, but use filename for specifying the graph description, and omit the "out0"
label:

ffplay —-f lavfi color=c=pink

Create three different video test filtered sources and play them:

ffplay —-f lavfi -graph "testsrc [outO]; testsrc,hflip [outl]; testsrc,negate [out2]" test3
Read an audio stream from a file using the amovie source and play it back with ffplay:

ffplay —-f lavfi "amovie=test.wav"

Read an audio stream and a video stream and play it back with £fplay:

ffplay —-f lavfi "movie=test.avi[outO];amovie=test.wav[outl]"

Dump decoded frames to images and closed captions to a file (experimental):

ffmpeg —-f lavfi -i "movie=test.ts[outO+subcc]" -map v frame$08d.png —-map s -c copy -f rawvideo subcc.bin

27.13 libediof]

Audio-CD input device based on libcdio.

To enable this input device during configuration you need libcdio installed on your system. It requires the
configure option ——enable-libcdio.

This device allows playing and grabbing from an Audio-CD.

For example to copy with £ fmpeg the entire Audio-CD in /dev/sr0, you may run the command:

ffmpeg -f libcdio -i /dev/sr0 cd.wav

27.13.1 Optiong#[TOC

speed

Set drive reading speed. Default value is 0.

The speed is specified CD-ROM speed units. The speed is set through the libcdio
cdio_cddap_speed_set function. On many CD-ROM drives, specifying a value too large will
result in using the fastest speed.

paranoia_mode

Set paranoia recovery mode flags. It accepts one of the following values:

‘disable’
‘verify’
‘overlap’
‘neverskip’
‘full’

Default value is ‘disable’.

For more information about the available recovery modes, consult the paranoia project
documentation.

27.14 libdc13948[TOC]

IIDC1394 input device, based on libdc1394 and libraw1394.

Requires the configure option ——enable-1ibdc1394.

27.15 openalf]

The OpenAL input device provides audio capture on all systems with a working OpenAL 1.1
implementation.

To enable this input device during configuration, you need OpenAL headers and libraries installed on your
system, and need to configure FFmpeg with ——enable-openal.

OpenAL headers and libraries should be provided as part of your OpenAL implementation, or as an
additional download (an SDK). Depending on your installation you may need to specify additional flags
via the ——extra-cflags and ——extra-1dflags for allowing the build system to locate the
OpenAL headers and libraries.

An incomplete list of OpenAL implementations follows:
Creative

The official Windows implementation, providing hardware acceleration with supported devices and
software fallback. See |http://openal.org/|

OpenAL Soft

Portable, open source (LGPL) software implementation. Includes backends for the most common
sound APIs on the Windows, Linux, Solaris, and BSD operating systems. See
|http://kcat.strangesoft.net/openal.htmlf

Apple

OpenAL is part of Core Audio, the official Mac OS X Audio interface. See
|http://developer.apple.com/technologies/mac/audio-and-video.html|

http://openal.org/
http://kcat.strangesoft.net/openal.html
http://developer.apple.com/technologies/mac/audio-and-video.html

This device allows one to capture from an audio input device handled through OpenAL.

You need to specify the name of the device to capture in the provided filename. If the empty string is
provided, the device will automatically select the default device. You can get the list of the supported
devices by using the option list_devices.

27.15.1 Optiong#[TOC]

channels

Set the number of channels in the captured audio. Only the values 1 (monaural) and 2 (stereo) are
currently supported. Defaults to 2.

sample_size

Set the sample size (in bits) of the captured audio. Only the values 8 and 16 are currently supported.
Defaults to 16.

sample_rate
Set the sample rate (in Hz) of the captured audio. Defaults to 44 . 1k.
list_devices

If set to t rue, print a list of devices and exit. Defaults to false.

27.15.2 Examples#|TOC

Print the list of OpenAL supported devices and exit:

$ ffmpeg -list_devices true -f openal -i dummy out.ogg
Capture from the OpenAL device DR-BT101 via PulseAudio:
$ ffmpeg -f openal -i ’DR-BT101 via PulseAudio’ out.ogg
Capture from the default device (note the empty string ” as filename):
$ ffmpeg —-f openal -i '’ out.ogg

Capture from two devices simultaneously, writing to two different files, within the same ffmpeg
command:

$ ffmpeg —-f openal —-i ’'DR-BT101 via PulseAudio’ outl.ogg —-f openal -i ’ALSA Default’ out2.ogg

Note: not all OpenAL implementations support multiple simultaneous capture - try the latest OpenAL Soft
if the above does not work.

27.16 ossHTO(

Open Sound System input device.

The filename to provide to the input device is the device node representing the OSS input device, and is
usually set to /dev/dsp.

For example to grab from /dev/dsp using £ fmpeg use the command:

ffmpeg -f oss -i /dev/dsp /tmp/oss.wav

For more information about OSS see: |http://manuals.opensound.com/usersguide/dsp.html|

27.16.1 Options#[TOC

sample_rate

Set the sample rate in Hz. Default is 48000.
channels

Set the number of channels. Default is 2.

27.17 pulsef]

PulseAudio input device.
To enable this output device you need to configure FFmpeg with ——enable-libpulse.
The filename to provide to the input device is a source device or the string "default"

To list the PulseAudio source devices and their properties you can invoke the command pactl list
sources.

More information about PulseAudio can be found on |http://www.pulseaudio.org}

27.17.1 Optiong#TOC

server

Connect to a specific PulseAudio server, specified by an IP address. Default server is used when not
provided.

name

Specify the application name PulseAudio will use when showing active clients, by default it is the
LIBAVFORMAT_IDENT string.

http://manuals.opensound.com/usersguide/dsp.html
http://www.pulseaudio.org/

stream_name
Specify the stream name PulseAudio will use when showing active streams, by default it is "record".
sample_rate
Specify the samplerate in Hz, by default 48kHz is used.
channels
Specify the channels in use, by default 2 (stereo) is set.
frame_size
Specify the number of bytes per frame, by default it is set to 1024.
fragment_size

Specify the minimal buffering fragment in PulseAudio, it will affect the audio latency. By default it is
unset.

wallclock

Set the initial PTS using the current time. Default is 1.

27.17.2 Examples#|TOC

Record a stream from default device:

ffmpeg —-f pulse -i default /tmp/pulse.wav

27.18 sndid#l[TOC]

sndio input device.
To enable this input device during configuration you need libsndio installed on your system.

The filename to provide to the input device is the device node representing the sndio input device, and is
usually set to /dev/audioO.

For example to grab from /dev/audio0 using £ fmpeg use the command:

ffmpeg -f sndio -i /dev/audioO /tmp/oss.wav

27.18.1 Optiong#[TOC]

sample_rate

Set the sample rate in Hz. Default is 48000.
channels

Set the number of channels. Default is 2.

27.19 videodlinux2, v412

Video4Linux2 input video device.
"v412" can be used as alias for "video4linux2".

If FFmpeg is built with v4l-utils support (by using the ——enable-1ibv412 configure option), it is
possible to use it with the —use_1ibv412 input device option.

The name of the device to grab is a file device node, usually Linux systems tend to automatically create
such nodes when the device (e.g. an USB webcam) is plugged into the system, and has a name of the kind
/dev/videoN, where N is a number associated to the device.

Video4Linux2 devices usually support a limited set of widthxheight sizes and frame rates. You can check
which are supported using —1ist_formats all for Video4Linux2 devices. Some devices, like TV
cards, support one or more standards. It is possible to list all the supported standards using
—-list_standards all.

The time base for the timestamps is 1 microsecond. Depending on the kernel version and configuration,
the timestamps may be derived from the real time clock (origin at the Unix Epoch) or the monotonic clock
(origin usually at boot time, unaffected by NTP or manual changes to the clock). The —t imestamps
abs or —ts abs option can be used to force conversion into the real time clock.

Some usage examples of the video4linux2 device with ffmpeg and ffplay:
® List supported formats for a video4linux2 device:
ffplay —-f video4linux2 -list_formats all /dev/videoO
® Grab and show the input of a video4linux2 device:
ffplay -f video4linux2 -framerate 30 -video_size hd720 /dev/videoO
® Grab and record the input of a video4linux2 device, leave the frame rate and size as previously set:

ffmpeg —-f video4linux2 -input_format mijpeg —-i /dev/video0 out.mpeg

For more information about Video4Linux, check |http://linuxtv.org/}

http://linuxtv.org/

27.19.1 Optiong#[TOC

standard

Set the standard. Must be the name of a supported standard. To get a list of the supported standards,
use the 1ist_standards option.

channel
Set the input channel number. Default to -1, which means using the previously selected channel.
video_size

Set the video frame size. The argument must be a string in the form WIDTHxHEIGHT or a valid size
abbreviation.

pixel_format
Select the pixel format (only valid for raw video input).
input_format

Set the preferred pixel format (for raw video) or a codec name. This option allows one to select the
input format, when several are available.

framerate
Set the preferred video frame rate.
list_formats
List available formats (supported pixel formats, codecs, and frame sizes) and exit.
Available values are:
‘all’
Show all available (compressed and non-compressed) formats.
‘raw’
Show only raw video (non-compressed) formats.
‘compressed’

Show only compressed formats.

list_standards

List supported standards and exit.

Available values are:

‘all’

Show all supported standards.

timestamps, ts

Set type of timestamps for grabbed frames.

Available values are:

‘default’

Use timestamps from the kernel.

3 ’

abs
Use absolute timestamps (wall clock).
‘mono2abs’
Force conversion from monotonic to absolute timestamps.
Default value is default.
use_libv412

Use libv412 (v4l-utils) conversion functions. Default is O.

27.20 vfwcap#[TO(Q

VW (Video for Windows) capture input device.

The filename passed as input is the capture driver number, ranging from O to 9. You may use "list" as
filename to print a list of drivers. Any other filename will be interpreted as device number 0.

27.20.1 Options#[TOC

video_size
Set the video frame size.

framerate

Set the grabbing frame rate. Default value is nt sc, corresponding to a frame rate of 30000/1001.

27.21 x11grab#[TO(C]

X11 video input device.

To enable this input device during configuration you need libxcb installed on your system. It will be
automatically detected during configuration.

This device allows one to capture a region of an X11 display.

The filename passed as input has the syntax:

[hostname] :display_number.screen_number|[+x_offset,y_offset]

hostname:display_number.screen_number specifies the X11 display name of the screen to grab from.
hostname can be omitted, and defaults to "localhost". The environment variable DISPLAY contains the
default display name.

x_offset and y_offset specify the offsets of the grabbed area with respect to the top-left border of the X11
screen. They default to 0.

Check the X11 documentation (e.g. man X) for more detailed information.

Use the xdpyinfo program for getting basic information about the properties of your X11 display (e.g.
grep for "name" or "dimensions").

For example to grab from : 0. 0 using f fmpegq:

ffmpeg —-f xllgrab —framerate 25 -video_size cif -i :0.0 out.mpg

Grab at position 10, 20:

ffmpeg —-f xllgrab —-framerate 25 -video_size cif -i :0.0+10,20 out.mpg

27.21.1 Options#]

draw_mouse

Specify whether to draw the mouse pointer. A value of O specifies not to draw the pointer. Default
value is 1.

follow_mouse

Make the grabbed area follow the mouse. The argument can be centered or a number of pixels
PIXELS.

When it is specified with "centered", the grabbing region follows the mouse pointer and keeps the
pointer at the center of region; otherwise, the region follows only when the mouse pointer reaches within
PIXELS (greater than zero) to the edge of region.

For example:

ffmpeg —-f xllgrab -follow_mouse centered —-framerate 25 -video_size cif -i :0.0 out.mpg

To follow only when the mouse pointer reaches within 100 pixels to edge:

ffmpeg —-f xllgrab -follow_mouse 100 —-framerate 25 -video_size cif -i :0.0 out.mpg
framerate

Set the grabbing frame rate. Default value is nt sc, corresponding to a frame rate of 30000/1001.
show_region

Show grabbed region on screen.

If show_region is specified with 1, then the grabbing region will be indicated on screen. With this
option, it is easy to know what is being grabbed if only a portion of the screen is grabbed.

region_border

Set the region border thickness if —show_region 1 isused. Range is 1 to 128 and default is 3
(XCB-based x11grab only).

For example:
ffmpeg —-f xllgrab -show_region 1 —-framerate 25 -video_size cif -i :0.0+10,20 out.mpg

With follow_mouse:

ffmpeg -f xllgrab -follow_mouse centered -show_region 1 -framerate 25 -video_size cif -i :0.0 out.mpg
video_size
Set the video frame size. Default value is vga.

grab_x
grab_y

Set the grabbing region coordinates. They are expressed as offset from the top left corner of the X11
window and correspond to the x_offset and y_offset parameters in the device name. The default value
for both options is 0.

28 Output Devices#[TOC

Output devices are configured elements in FFmpeg that can write multimedia data to an output device
attached to your system.

When you configure your FFmpeg build, all the supported output devices are enabled by default. You can
list all available ones using the configure option "—list-outdevs".

You can disable all the output devices using the configure option "—disable-outdevs", and selectively
enable an output device using the option "—enable-outdev=OUTDEV", or you can disable a particular input
device using the option "—disable-outdev=OUTDEV".

The option "-devices" of the ff* tools will display the list of enabled output devices.

A description of the currently available output devices follows.

28.1 alsaff

ALSA (Advanced Linux Sound Architecture) output device.

28.1.1 ExamplesfTOC
® Play a file on default ALSA device:
ffmpeg -i INPUT -f alsa default
® Play a file on soundcard 1, audio device 7:

ffmpeg -i INPUT -f alsa hw:1,7

28.2 cacaf|TO(Q

CACA output device.

This output device allows one to show a video stream in CACA window. Only one CACA window is
allowed per application, so you can have only one instance of this output device in an application.

To enable this output device you need to configure FFmpeg with ——enable-1libcaca. libcacais a
graphics library that outputs text instead of pixels.

For more information about libcaca, check: fhttp://caca.zoy.org/wiki/libcacal

28.2.1 Optionsf[TOC

window_title

http://caca.zoy.org/wiki/libcaca

Set the CACA window title, if not specified default to the filename specified for the output device.
window_size

Set the CACA window size, can be a string of the form widthxheight or a video size abbreviation. If
not specified it defaults to the size of the input video.

driver
Set display driver.
algorithm

Set dithering algorithm. Dithering is necessary because the picture being rendered has usually far
more colours than the available palette. The accepted values are listed with —1ist_dither
algorithms.

antialias

Set antialias method. Antialiasing smoothens the rendered image and avoids the commonly seen
staircase effect. The accepted values are listed with ~1ist_dither antialiases.

charset

Set which characters are going to be used when rendering text. The accepted values are listed with
—list_dither charsets.

color

Set color to be used when rendering text. The accepted values are listed with —1ist_dither
colors.

list_drivers
If set to t rue, print a list of available drivers and exit.
list_dither

List available dither options related to the argument. The argument must be one of algorithms,
antialiases, charsets, colors.

28.2.2 Examples#[TOC]

® The following command shows the £ fmpeg output is an CACA window, forcing its size to 80x25:
ffmpeg —-i INPUT -c:v rawvideo -pix_fmt rgb24 -window_size 80x25 -f caca -

® Show the list of available drivers and exit:

ffmpeg —-i INPUT -pix_fmt rgb24 -f caca -list_drivers true -
® Show the list of available dither colors and exit:

ffmpeg —-i INPUT -pix_fmt rgb24 -f caca -list_dither colors -

28.3 decklinki

The decklink output device provides playback capabilities for Blackmagic DeckLink devices.

To enable this output device, you need the Blackmagic DeckLink SDK and you need to configure with the
appropriate ——extra—-cflags and ——extra—-1dflags. On Windows, you need to run the IDL files
through widl.

DeckLink is very picky about the formats it supports. Pixel format is always uyvy422, framerate, field
order and video size must be determined for your device with —1ist_formats 1. Audio sample rate is
always 48 kHz.

28.3.1 Options#]

list_devices

If set to t rue, print a list of devices and exit. Defaults to false.
list_formats

If set to t rue, print a list of supported formats and exit. Defaults to false.
preroll

Amount of time to preroll video in seconds. Defaults to 0. 5.

28.3.2 Exampled#]

® List output devices:

ffmpeg -1 test.avi —-f decklink -list_devices 1 dummy
® List supported formats:

ffmpeg —-i test.avi —-f decklink -list_formats 1 ’'DeckLink Mini Monitor’
® Play video clip:

ffmpeg -i test.avi —-f decklink -pix_fmt uyvy422 ’'DeckLink Mini Monitor’
® Play video clip with non-standard framerate or video size:

ffmpeg —-i test.avi -f decklink -pix_fmt uyvy422 -s 720x486 -r 24000/1001 ’DeckLink Mini Monitor’

28.4 libndi_newtek#]

The libndi_newtek output device provides playback capabilities for using NDI (Network Device Interface,
standard created by NewTek).

Output filename is a NDI name.

To enable this output device, you need the NDI SDK and you need to configure with the appropriate
——extra-cflags and ——extra-1ldflags.

NDI uses uyvy422 pixel format natively, but also supports bgra, bgr0, rgba and rgb0.

28.4.1 OptionsfTOC

reference_level

The audio reference level in dB. This specifies how many dB above the reference level (+4dBU) is
the full range of 16 bit audio. Defaults to 0.

clock_video
These specify whether video "clock" themselves. Defaults to false.
clock_audio

These specify whether audio "clock" themselves. Defaults to false.

28.4.2 Examples#[TOC]

® Play video clip:

£fmpeg -i "udp://@239.1.1.1:104802fifo_size=1000000s0overrun_nonfatal=1" -vf "scale=720:576, fps=fps=25, setdar=dar=16/9, format=pix_fmts=uyvy422" -f libndi_newtek NEW_NDI1

28.5 fhdeviTOC]

Linux framebuffer output device.

The Linux framebuffer is a graphic hardware-independent abstraction layer to show graphics on a
computer monitor, typically on the console. It is accessed through a file device node, usually /dev/£b0.

For more detailed information read the file Documentation/fb/framebuffer.txt included in the
Linux source tree.

28.5.1 OptiongHf|[TOC]

xoffset
yoffset

Set x/y coordinate of top left corner. Default is O.

28.5.2 Examples#]

Play a file on framebuffer device /dev/£b0. Required pixel format depends on current framebuffer
settings.

ffmpeg -re -i INPUT -c:v rawvideo -pix_fmt bgra -f fbdev /dev/fb0

See also |http://linux-fbdev.sourceforge.net/| and fbset(1).

28.6 opengl

OpenGL output device.

To enable this output device you need to configure FFmpeg with ——enable-opengl.

This output device allows one to render to OpenGL context. Context may be provided by application or
default SDL window is created.

When device renders to external context, application must implement handlers for following messages:
AV_DEV_TO_APP_CREATE_WINDOW_BUFFER - create OpenGL context on current thread.
AV_DEV_TO_APP_PREPARE_WINDOW_BUFFER - make OpenGL context current.
AV_DEV_TO_APP_DISPLAY_WINDOW_BUFFER—Swapbuﬂbm.
AV_DEV_TO_APP_DESTROY_WINDOW_BUFFER - destroy OpenGL context. Application is also
required to inform a device about current resolution by sending AV_APP_TO_DEV_WINDOW_SIZE
message.

28.6.1 Options#]

background
Set background color. Black is a default.
no_window

Disables default SDL window when set to non-zero value. Application must provide OpenGL context
and both window_size_cb and window_swap_buffers_cb callbacks when set.

window_title

Set the SDL window title, if not specified default to the filename specified for the output device.
Ignored when no_window is set.

window_size

Set preferred window size, can be a string of the form widthxheight or a video size abbreviation. If
not specified it defaults to the size of the input video, downscaled according to the aspect ratio.
Mostly usable when no_window is not set.

http://linux-fbdev.sourceforge.net/

28.6.2 Examples#[TOC]

Play a file on SDL window using OpenGL rendering:

ffmpeg -1 INPUT -f opengl "window title"

28.7 ossHTO(

OSS (Open Sound System) output device.

28.8 pulséfi[TOC

PulseAudio output device.

To enable this output device you need to configure FFmpeg with ——enable-libpulse.

More information about PulseAudio can be found on fhttp://www.pulseaudio.org]

28.8.1 Options#]

server

Connect to a specific PulseAudio server, specified by an IP address. Default server is used when not
provided.

name

Specify the application name PulseAudio will use when showing active clients, by default it is the
LIBAVFORMAT_IDENT string.

stream_name

Specify the stream name PulseAudio will use when showing active streams, by default it is set to the
specified output name.

device

Specify the device to use. Default device is used when not provided. List of output devices can be
obtained with command pactl list sinks.

buffer _size
buffer_ duration

Control the size and duration of the PulseAudio buffer. A small buffer gives more control, but
requires more frequent updates.

http://www.pulseaudio.org/

buffer_size specifies size in bytes while buf fer_duration specifies duration in
milliseconds.

When both options are provided then the highest value is used (duration is recalculated to bytes using
stream parameters). If they are set to 0 (which is default), the device will use the default PulseAudio
duration value. By default PulseAudio set buffer duration to around 2 seconds.

prebuf

Specify pre-buffering size in bytes. The server does not start with playback before at least prebuf
bytes are available in the buffer. By default this option is initialized to the same value as
buffer_size orbuffer_duration (whichever is bigger).

minreq

Specify minimum request size in bytes. The server does not request less than minreq bytes from the
client, instead waits until the buffer is free enough to request more bytes at once. It is recommended
to not set this option, which will initialize this to a value that is deemed sensible by the server.

28.8.2 Examples#[TOC]

Play a file on default device on default server:

ffmpeg -—-i INPUT -f pulse "stream name"

28.9 sdi[TOC]

SDL (Simple DirectMedia Layer) output device.

This output device allows one to show a video stream in an SDL window. Only one SDL window is
allowed per application, so you can have only one instance of this output device in an application.

To enable this output device you need libsdl installed on your system when configuring your build.

For more information about SDL, check: http://www .libsdl.org/|

28.9.1 Options#]

window_title

Set the SDL window title, if not specified default to the filename specified for the output device.
icon_title
Set the name of the iconified SDL window, if not specified it is set to the same value of window_title.

window_size

http://www.libsdl.org/

Set the SDL window size, can be a string of the form widthxheight or a video size abbreviation. If not
specified it defaults to the size of the input video, downscaled according to the aspect ratio.

window_fullscreen

Set fullscreen mode when non-zero value is provided. Default value is zero.

28.9.2 Interactive commands#|
The window created by the device can be controlled through the following interactive commands.
q, ESC

Quit the device immediately.

28.9.3 Examples#]

The following command shows the £ fmpeg output is an SDL window, forcing its size to the qcif format:

ffmpeg —-i INPUT -c:v rawvideo -pix_fmt yuv420p -window_size gcif -f sdl "SDL output"

28.10 sndio#[TOC]

sndio audio output device.

28.11 xW[TOC

XV (XVideo) output device.

This output device allows one to show a video stream in a X Window System window.

28.11.1 Optiong#TOC]

display_name

Specify the hardware display name, which determines the display and communications domain to be
used.

The display name or DISPLAY environment variable can be a string in the format
hostname| :number|.screen_number]].

hostname specifies the name of the host machine on which the display is physically attached. number
specifies the number of the display server on that host machine. screen_number specifies the screen
to be used on that server.

If unspecified, it defaults to the value of the DISPLAY environment variable.

For example, dual-headed: 0.1 would specify screen 1 of display O on the machine named
“dual-headed”.

Check the X11 specification for more detailed information about the display name format.
window_id

When set to non-zero value then device doesn’t create new window, but uses existing one with
provided window_id. By default this options is set to zero and device creates its own window.

window_size

Set the created window size, can be a string of the form widthxheight or a video size abbreviation. If
not specified it defaults to the size of the input video. Ignored when window_id is set.

window_x
window_y

Set the X and Y window offsets for the created window. They are both set to 0 by default. The values
may be ignored by the window manager. Ignored when window_id is set.

window_title

Set the window title, if not specified default to the filename specified for the output device. Ignored
when window_id is set.

For more information about XVideo see fhttp://www.x.org/|

28.11.2 Examples#|TOC|

® Decode, display and encode video input with f fmpeg at the same time:

ffmpeg —-i INPUT OUTPUT -f xv display
® Decode and display the input video to multiple X11 windows:

ffmpeg —-i INPUT -f xv normal -vf negate —-f xv negated

29 Resampler Options#[TOC

The audio resampler supports the following named options.

Options may be set by specifying -option value in the FFmpeg tools, option=value for the aresample filter,
by setting the value explicitly in the SwrContext options or using the 1ibavutil/opt .h API for
programmatic use.

ich, in_channel_count

http://www.x.org/

Set the number of input channels. Default value is 0. Setting this value is not mandatory if the
corresponding channel layout in_channel_layout is set.

och, out_channel_count

Set the number of output channels. Default value is 0. Setting this value is not mandatory if the
corresponding channel layout out_channel_layout is set.

uch, used_channel_count

Set the number of used input channels. Default value is 0. This option is only used for special
remapping.

isr, in_sample_rate

Set the input sample rate. Default value is 0.
osr, out_sample_rate

Set the output sample rate. Default value is 0.
isf, in_sample_fmt

Specify the input sample format. It is set by default to none.
osf, out_sample_fmt

Specify the output sample format. It is set by default to none.
tsf, internal_sample_fmt

Set the internal sample format. Default value is none. This will automatically be chosen when it is
not explicitly set.

icl, in_channel_layout
ocl, out_channel_layout

Set the input/output channel layout.

See (ffmpeg-utils)the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.
clev, center_mix_level

Set the center mix level. It is a value expressed in deciBel, and must be in the interval [-32,32].
slev, surround_mix_level

Set the surround mix level. It is a value expressed in deciBel, and must be in the interval [-32,32].

lfe mix_level

Set LFE mix into non LFE level. It is used when there is a LFE input but no LFE output. It is a value
expressed in deciBel, and must be in the interval [-32,32].

rmvol, rematrix_volume
Set rematrix volume. Default value is 1.0.
rematrix_maxval

Set maximum output value for rematrixing. This can be used to prevent clipping vs. preventing
volume reduction. A value of 1.0 prevents clipping.

flags, swr_flags
Set flags used by the converter. Default value is O.
It supports the following individual flags:
res

force resampling, this flag forces resampling to be used even when the input and output sample
rates match.

dither_scale
Set the dither scale. Default value is 1.
dither_method
Set dither method. Default value is 0.
Supported values:
‘rectangular’
select rectangular dither
‘triangular’
select triangular dither
‘triangular_hp’
select triangular dither with high pass

‘lipshitz’

select Lipshitz noise shaping dither.
‘shibata’

select Shibata noise shaping dither.
‘low_shibata’

select low Shibata noise shaping dither.
‘high_shibata’

select high Shibata noise shaping dither.
‘f_weighted’

select f-weighted noise shaping dither
‘modified_e_weighted’

select modified-e-weighted noise shaping dither
‘improved_e_weighted’

select improved-e-weighted noise shaping dither

resampler

Set resampling engine. Default value is swr.
Supported values:

SWI

select the native SW Resampler; filter options precision and cheby are not applicable in this
case.

‘soxr’

select the SoX Resampler (where available); compensation, and filter options filter_size,
phase_shift, exact_rational, filter_type & kaiser_beta, are not applicable in this case.

filter_size
For swr only, set resampling filter size, default value is 32.

phase_shift

For swr only, set resampling phase shift, default value is 10, and must be in the interval [0,30].
linear_interp

Use linear interpolation when enabled (the default). Disable it if you want to preserve speed instead
of quality when exact_rational fails.

exact_rational

For swr only, when enabled, try to use exact phase_count based on input and output sample rate.
However, if it is larger than 1 << phase_shift, the phase_count willbe 1 << phase_shift
as fallback. Default is enabled.

cutoff

Set cutoff frequency (swr: 6dB point; soxr: 0dB point) ratio; must be a float value between 0 and 1.
Default value is 0.97 with swr, and 0.91 with soxr (which, with a sample-rate of 44100, preserves the
entire audio band to 20kHz).

precision

For soxr only, the precision in bits to which the resampled signal will be calculated. The default value
of 20 (which, with suitable dithering, is appropriate for a destination bit-depth of 16) gives SoX’s
"High Quality’; a value of 28 gives SoX’s *Very High Quality’.

cheby

For soxr only, selects passband rolloff none (Chebyshev) & higher-precision approximation for
“irrational’ ratios. Default value is 0.

async

For swr only, simple 1 parameter audio sync to timestamps using stretching, squeezing, filling and
trimming. Setting this to 1 will enable filling and trimming, larger values represent the maximum
amount in samples that the data may be stretched or squeezed for each second. Default value is 0,
thus no compensation is applied to make the samples match the audio timestamps.

first_pts

For swr only, assume the first pts should be this value. The time unit is 1 / sample rate. This allows
for padding/trimming at the start of stream. By default, no assumption is made about the first frame’s
expected pts, so no padding or trimming is done. For example, this could be set to 0 to pad the
beginning with silence if an audio stream starts after the video stream or to trim any samples with a
negative pts due to encoder delay.

min_comp

For swr only, set the minimum difference between timestamps and audio data (in seconds) to trigger
stretching/squeezing/filling or trimming of the data to make it match the timestamps. The default is that
stretching/squeezing/filling and trimming is disabled (min_comp = FLT_MAX).

min_hard_comp

For swr only, set the minimum difference between timestamps and audio data (in seconds) to trigger
adding/dropping samples to make it match the timestamps. This option effectively is a threshold to
select between hard (trim/fill) and soft (squeeze/stretch) compensation. Note that all compensation is
by default disabled through min_ comp. The default is 0.1.

comp_duration

For swr only, set duration (in seconds) over which data is stretched/squeezed to make it match the
timestamps. Must be a non-negative double float value, default value is 1.0.

max_soft_comp

For swr only, set maximum factor by which data is stretched/squeezed to make it match the
timestamps. Must be a non-negative double float value, default value is 0.

matrix_encoding
Select matrixed stereo encoding.
It accepts the following values:
‘none’
select none
‘dolby’
select Dolby
‘dplii’
select Dolby Pro Logic 11
Default value is none.
filter type
For swr only, select resampling filter type. This only affects resampling operations.
It accepts the following values:

‘cubic’

select cubic
‘blackman_nuttall’
select Blackman Nuttall windowed sinc
‘kaiser’
select Kaiser windowed sinc
kaiser_beta

For swr only, set Kaiser window beta value. Must be a double float value in the interval [2,16],
default value is 9.

output_sample_bits

For swr only, set number of used output sample bits for dithering. Must be an integer in the interval
[0,64], default value is O, which means it’s not used.

30 Scaler Options#[TOC

The video scaler supports the following named options.

Options may be set by specifying -option value in the FFmpeg tools. For programmatic use, they can be
set explicitly in the SwsContext options or through the 1ibavutil/opt.h APL

sws_flags

Set the scaler flags. This is also used to set the scaling algorithm. Only a single algorithm should be
selected. Default value is ‘bicubic’.

It accepts the following values:
‘fast_bilinear’

Select fast bilinear scaling algorithm.
‘bilinear’

Select bilinear scaling algorithm.
‘bicubic’

Select bicubic scaling algorithm.

‘experimental’

Select experimental scaling algorithm.
‘neighbor’

Select nearest neighbor rescaling algorithm.
‘area’

Select averaging area rescaling algorithm.
‘bicublin’

Select bicubic scaling algorithm for the luma component, bilinear for chroma components.
‘gauss’

Select Gaussian rescaling algorithm.
‘sinc’

Select sinc rescaling algorithm.
‘lanczos’

Select Lanczos rescaling algorithm.
‘spline’

Select natural bicubic spline rescaling algorithm.
‘print_info’

Enable printing/debug logging.
‘accurate_rnd’

Enable accurate rounding.
‘full_chroma_int’

Enable full chroma interpolation.
‘full_chroma_inp’

Select full chroma input

‘bitexact’

Enable bitexact output.

srcw

Set source width.
srch

Set source height.
dstw

Set destination width.
dsth

Set destination height.
src_format

Set source pixel format (must be expressed as an integer).
dst_format

Set destination pixel format (must be expressed as an integer).
src_range

Select source range.
dst_range

Select destination range.
param0, paraml

Set scaling algorithm parameters. The specified values are specific of some scaling algorithms and
ignored by others. The specified values are floating point number values.

sws_dither
Set the dithering algorithm. Accepts one of the following values. Default value is ‘auto’.
‘auto’
automatic choice

¢ b
none

no dithering
‘bayer’
bayer dither
‘e’
error diffusion dither
‘a_dither’
arithmetic dither, based using addition
‘x_dither’
arithmetic dither, based using xor (more random/less apparent patterning that a_dither).
alphablend

Set the alpha blending to use when the input has alpha but the output does not. Default value is
‘none’.

‘uniform_color’

Blend onto a uniform background color
‘checkerboard’

Blend onto a checkerboard
‘none’

No blending

31 Filtering Introductionf{TOC

Filtering in FFmpeg is enabled through the libavfilter library.

In libavfilter, a filter can have multiple inputs and multiple outputs. To illustrate the sorts of things that are
possible, we consider the following filtergraph.

This filtergraph splits the input stream in two streams, then sends one stream through the crop filter and
the vflip filter, before merging it back with the other stream by overlaying it on top. You can use the
following command to achieve this:

ffmpeg —-i INPUT -vf "split [main] [tmp]; [tmp] crop=iw:ih/2:0:0, vflip [flip]; [main] [flip] overlay=0:H/2" OUTPUT
The result will be that the top half of the video is mirrored onto the bottom half of the output video.

Filters in the same linear chain are separated by commas, and distinct linear chains of filters are separated
by semicolons. In our example, crop,vflip are in one linear chain, split and overlay are separately in
another. The points where the linear chains join are labelled by names enclosed in square brackets. In the
example, the split filter generates two outputs that are associated to the labels [main] and [tmp].

The stream sent to the second output of split, labelled as [tmp], is processed through the crop filter, which
crops away the lower half part of the video, and then vertically flipped. The overlay filter takes in input the
first unchanged output of the split filter (which was labelled as [main]), and overlay on its lower half the
output generated by the crop,vflip filterchain.

Some filters take in input a list of parameters: they are specified after the filter name and an equal sign,
and are separated from each other by a colon.

There exist so-called source filters that do not have an audio/video input, and sink filters that will not have
audio/video output.

32 graph2dot#i[TOC

The graph2dot program included in the FFmpeg tools directory can be used to parse a filtergraph
description and issue a corresponding textual representation in the dot language.

Invoke the command:

graph2dot -h
to see how to use graph2dot.

You can then pass the dot description to the dot program (from the graphviz suite of programs) and
obtain a graphical representation of the filtergraph.

For example the sequence of commands:

echo GRAPH _DESCRIPTION | \
tools/graph2dot -o graph.tmp && \

dot -Tpng graph.tmp -o graph.png && \
display graph.png

can be used to create and display an image representing the graph described by the
GRAPH_DESCRIPTION string. Note that this string must be a complete self-contained graph, with its
inputs and outputs explicitly defined. For example if your command line is of the form:

ffmpeg -1 infile -vf scale=640:360 outfile

your GRAPH_DESCRIPTION string will need to be of the form:

nullsrc,scale=640:360,nullsink

you may also need to set the nullsrc parameters and add a format filter in order to simulate a specific input
file.

33 Filtergraph descriptionfTOC

A filtergraph is a directed graph of connected filters. It can contain cycles, and there can be multiple links
between a pair of filters. Each link has one input pad on one side connecting it to one filter from which it
takes its input, and one output pad on the other side connecting it to one filter accepting its output.

Each filter in a filtergraph is an instance of a filter class registered in the application, which defines the
features and the number of input and output pads of the filter.

A filter with no input pads is called a "source", and a filter with no output pads is called a "sink".

33.1 Filtergraph syntax#]

A filtergraph has a textual representation, which is recognized by the ~filter/-v£f/-af and
—-filter_complex options in ffmpeg and —vf/-af in ffplay, and by the
avfilter_graph_parse_ptr () function definedin l1ibavfilter/avfilter.h.

A filterchain consists of a sequence of connected filters, each one connected to the previous one in the
sequence. A filterchain is represented by a list of ","-separated filter descriptions.

A filtergraph consists of a sequence of filterchains. A sequence of filterchains is represented by a list of

nen

;"-separated filterchain descriptions.

A filter is represented by a string of the form:
lin_link_1]...[in_link_N]filter_name @id=arguments|out_link_1I]...lout_link_M]

filter_name is the name of the filter class of which the described filter is an instance of, and has to be the
name of one of the filter classes registered in the program optionally followed by "@id". The name of the
filter class is optionally followed by a string "=arguments".

arguments is a string which contains the parameters used to initialize the filter instance. It may have one of
two forms:

® A ’:’-separated list of key=value pairs.

® A ’:’-separated list of value. In this case, the keys are assumed to be the option names in the order
they are declared. E.g. the fade filter declares three options in this order — type, start_frame
and nb_ frames. Then the parameter list in:0:30 means that the value in is assigned to the option
type, 0to start_frame and 30 to nb_frames.

® A ’:’-separated list of mixed direct value and long key=value pairs. The direct value must precede the

key=value pairs, and follow the same constraints order of the previous point. The following
key=value pairs can be set in any preferred order.

If the option value itself is a list of items (e.g. the format filter takes a list of pixel formats), the items in
the list are usually separated by *|’.

The list of arguments can be quoted using the character ‘’’ as initial and ending mark, and the character
‘\” for escaping the characters within the quoted text; otherwise the argument string is considered
terminated when the next special character (belonging to the set ‘[]=;,) is encountered.

The name and arguments of the filter are optionally preceded and followed by a list of link labels. A link
label allows one to name a link and associate it to a filter output or input pad. The preceding labels
in_link_1 ... in_link_N, are associated to the filter input pads, the following labels out_link_1 ...
out_link_M, are associated to the output pads.

When two link labels with the same name are found in the filtergraph, a link between the corresponding
input and output pad is created.

If an output pad is not labelled, it is linked by default to the first unlabelled input pad of the next filter in
the filterchain. For example in the filterchain

nullsrc, split[Ll], [L2]overlay, nullsink

the split filter instance has two output pads, and the overlay filter instance two input pads. The first output
pad of split is labelled "L1", the first input pad of overlay is labelled "L2", and the second output pad of
split is linked to the second input pad of overlay, which are both unlabelled.

In a filter description, if the input label of the first filter is not specified, "in" is assumed; if the output label
of the last filter is not specified, "out" is assumed.

In a complete filterchain all the unlabelled filter input and output pads must be connected. A filtergraph is
considered valid if all the filter input and output pads of all the filterchains are connected.

Libavfilter will automatically insert [scale] filters where format conversion is required. It is possible to
specify swscale flags for those automatically inserted scalers by prepending sws_flags=flags; to the
filtergraph description.

Here is a BNF description of the filtergraph syntax:

NAME ::= sequence of alphanumeric characters and ’'_’

FILTER_NAME ::= NAME["@Q"NAME]

LINKLABEL t:= "[" NAME "]"

LINKLABELS ::= LINKLABEL [LINKLABELS]

FILTER_ARGUMENTS ::= sequence of chars (possibly quoted)

FILTER ::= [LINKLABELS] FILTER NAME ["=" FILTER ARGUMENTS] [LINKLABELS]
FILTERCHAIN ::= FILTER [,FILTERCHAIN]

FILTERGRAPH ::= [sws_flags=flags;] FILTERCHAIN [;FILTERGRAPH]

33.2 Notes on filtergraph escaping#]

Filtergraph description composition entails several levels of escaping. See (ffmpeg-utils)the "Quoting and
escaping" section in the ffmpeg-utils(1) manual for more information about the employed escaping
procedure.

A first level escaping affects the content of each filter option value, which may contain the special
character : used to separate values, or one of the escaping characters \’.

A second level escaping affects the whole filter description, which may contain the escaping characters \’
or the special characters [1, ; used by the filtergraph description.

Finally, when you specify a filtergraph on a shell commandline, you need to perform a third level escaping
for the shell special characters contained within it.

For example, consider the following string to be embedded in the [drawtex{ filter description text value:
this is a ’string’: may contain one, or more, special characters

This string contains the ’ special escaping character, and the : special character, so it needs to be escaped
in this way:

text=this is a \’string\’\: may contain one, or more, special characters

A second level of escaping is required when embedding the filter description in a filtergraph description,
in order to escape all the filtergraph special characters. Thus the example above becomes:

drawtext=text=this is a \\\’string\\\’\\: may contain one\, or more\, special characters
(note that in addition to the \’ escaping special characters, also , needs to be escaped).

Finally an additional level of escaping is needed when writing the filtergraph description in a shell
command, which depends on the escaping rules of the adopted shell. For example, assuming that \ is
special and needs to be escaped with another \, the previous string will finally result in:

-vf "drawtext=text=this is a \\\\\\’string\\\\\\’\\\\: may contain one\\, or more\\, special characters"

34 Timeline editing#]TOC

Some filters support a generic enable option. For the filters supporting timeline editing, this option can
be set to an expression which is evaluated before sending a frame to the filter. If the evaluation is
non-zero, the filter will be enabled, otherwise the frame will be sent unchanged to the next filter in the
filtergraph.

The expression accepts the following values:

Gt,

timestamp expressed in seconds, NAN if the input timestamp is unknown

n
sequential number of the input frame, starting from 0
‘bos’
the position in the file of the input frame, NAN if unknown
W
‘B

width and height of the input frame if video
Additionally, these filters support an enalble command that can be used to re-define the expression.
Like any other filtering option, the enable option follows the same rules.

For example, to enable a blur filter (smartblur) from 10 seconds to 3 minutes, and afcurves|filter starting at
3 seconds:

smartblur = enable=’between(t,10,3*60)",
enable='gte(t,3)’ : preset=cross_process

curves

See ffmpeg -filters to view which filters have timeline support.

35 Options for filters with several inputs (framesync)#[TOC

Some filters with several inputs support a common set of options. These options can only be set by name,
not with the short notation.

eof_action

The action to take when EOF is encountered on the secondary input; it accepts one of the following
values:

repeat

Repeat the last frame (the default).
endall

End both streams.

pass

Pass the main input through.
shortest
If set to 1, force the output to terminate when the shortest input terminates. Default value is O.
repeatlast

If set to 1, force the filter to extend the last frame of secondary streams until the end of the primary
stream. A value of O disables this behavior. Default value is 1.

36 Audio FilterfiTOC

When you configure your FFmpeg build, you can disable any of the existing filters using
——disable-filters. The configure output will show the audio filters included in your build.

Below is a description of the currently available audio filters.

36.1 acompressorf[TO(C

A compressor is mainly used to reduce the dynamic range of a signal. Especially modern music is mostly
compressed at a high ratio to improve the overall loudness. It’s done to get the highest attention of a
listener, "fatten” the sound and bring more "power" to the track. If a signal is compressed too much it may
sound dull or "dead" afterwards or it may start to "pump" (which could be a powerful effect but can also
destroy a track completely). The right compression is the key to reach a professional sound and is the high
art of mixing and mastering. Because of its complex settings it may take a long time to get the right feeling
for this kind of effect.

Compression is done by detecting the volume above a chosen level threshold and dividing it by the
factor set with ratio. So if you set the threshold to -12dB and your signal reaches -6dB a ratio of 2:1
will result in a signal at -9dB. Because an exact manipulation of the signal would cause distortion of the
waveform the reduction can be levelled over the time. This is done by setting "Attack" and "Release".
attack determines how long the signal has to rise above the threshold before any reduction will occur
and release sets the time the signal has to fall below the threshold to reduce the reduction again.
Shorter signals than the chosen attack time will be left untouched. The overall reduction of the signal can
be made up afterwards with the makeup setting. So compressing the peaks of a signal about 6dB and
raising the makeup to this level results in a signal twice as loud than the source. To gain a softer entry in
the compression the knee flattens the hard edge at the threshold in the range of the chosen decibels.

The filter accepts the following options:
level_in
Set input gain. Default is 1. Range is between 0.015625 and 64.

threshold

If a signal of stream rises above this level it will affect the gain reduction. By default it is 0.125.
Range is between 0.00097563 and 1.

ratio

Set a ratio by which the signal is reduced. 1:2 means that if the level rose 4dB above the threshold, it
will be only 2dB above after the reduction. Default is 2. Range is between 1 and 20.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction starts.
Default is 20. Range is between 0.01 and 2000.

release

Amount of milliseconds the signal has to fall below the threshold before reduction is decreased again.
Default is 250. Range is between 0.01 and 9000.

makeup

Set the amount by how much signal will be amplified after processing. Default is 1. Range is from 1
to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is 2.82843.
Range is between 1 and 8.

link

Choose if the average level between all channels of input stream or the louder(maximum) channel
of input stream affects the reduction. Default is average.

detection

Should the exact signal be taken in case of peak or an RMS one in case of rms. Default is rms
which is mostly smoother.

mix

How much to use compressed signal in output. Default is 1. Range is between 0 and 1.

36.2 acopy#]

Copy the input audio source unchanged to the output. This is mainly useful for testing purposes.

36.3 acrossfadefiTOC

Apply cross fade from one input audio stream to another input audio stream. The cross fade is applied for
specified duration near the end of first stream.

The filter accepts the following options:
nb_samples, ns

Specify the number of samples for which the cross fade effect has to last. At the end of the cross fade
effect the first input audio will be completely silent. Default is 44100.

duration, d

Specify the duration of the cross fade effect. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. By default the duration is determined by nb_samples.
If set this option is used instead of nb_samples.

overlap, o

Should first stream end overlap with second stream start. Default is enabled.
curvel

Set curve for cross fade transition for first stream.
curve?2

Set curve for cross fade transition for second stream.

For description of available curve types see [afade]filter description.

36.3.1 Exampled#|

® Cross fade from one input to another:
ffmpeg —-i first.flac -i second.flac -filter_ complex acrossfade=d=10:cl=exp:c2=exp output.flac

® Cross fade from one input to another but without overlapping:

ffmpeg —-i first.flac -i second.flac -filter_complex acrossfade=d=10:0=0:cl=exp:c2=exp output.flac

36.4 acrushenrff]

Reduce audio bit resolution.

This filter is bit crusher with enhanced functionality. A bit crusher is used to audibly reduce number of bits
an audio signal is sampled with. This doesn’t change the bit depth at all, it just produces the effect.
Material reduced in bit depth sounds more harsh and "digital". This filter is able to even round to
continuous values instead of discrete bit depths. Additionally it has a D/C offset which results in different

crushing of the lower and the upper half of the signal. An Anti-Aliasing setting is able to produce "softer"
crushing sounds.

Another feature of this filter is the logarithmic mode. This setting switches from linear distances between
bits to logarithmic ones. The result is a much more "natural”" sounding crusher which doesn’t gate low
signals for example. The human ear has a logarithmic perception, too so this kind of crushing is much
more pleasant. Logarithmic crushing is also able to get anti-aliased.

The filter accepts the following options:
level_in
Set level in.
level_out
Set level out.
bits
Set bit reduction.
mix
Set mixing amount.
mode
Can be linear: 1in or logarithmic: 1og.
dc
Set DC.
aa
Set anti-aliasing.
samples
Set sample reduction.
1fo
Enable LFO. By default disabled.

lforange

Set LFO range.
lforate

Set LFO rate.

36.5 adelay#[TOC|

Delay one or more audio channels.

Samples in delayed channel are filled with silence.
The filter accepts the following option:

delays

Set list of delays in milliseconds for each channel separated by ’|". Unused delays will be silently
ignored. If number of given delays is smaller than number of channels all remaining channels will not
be delayed. If you want to delay exact number of samples, append ’S’ to number.

36.5.1 Exampled#]

® Delay first channel by 1.5 seconds, the third channel by 0.5 seconds and leave the second channel
(and any other channels that may be present) unchanged.

adelay=1500|0]|500

® Delay second channel by 500 samples, the third channel by 700 samples and leave the first channel
(and any other channels that may be present) unchanged.

adelay=0|500s|700s

36.6 aechdf[TO(

Apply echoing to the input audio.

Echoes are reflected sound and can occur naturally amongst mountains (and sometimes large buildings)
when talking or shouting; digital echo effects emulate this behaviour and are often used to help fill out the
sound of a single instrument or vocal. The time difference between the original signal and the reflection is
the delay, and the loudness of the reflected signal is the decay. Multiple echoes can have different
delays and decays.

A description of the accepted parameters follows.
in_gain

Set input gain of reflected signal. Default is 0. 6.

out_gain
Set output gain of reflected signal. Defaultis 0. 3.
delays

Set list of time intervals in milliseconds between original signal and reflections separated by °|’.
Allowed range for each delayis (0 — 90000.0]. Defaultis 1000.

decays

Set list of loudness of reflected signals separated by ’
1.0]. Defaultis 0. 5.

36.6.1 Examples#[TOC]

® Make it sound as if there are twice as many instruments as are actually playing:

’. Allowed range for each decayis (0 -

aecho=0.8:0.88:60:0.4

® [f delay is very short, then it sound like a (metallic) robot playing music:
aecho=0.8:0.88:6:0.4

® A longer delay will sound like an open air concert in the mountains:
aecho=0.8:0.9:1000:0.3

® Same as above but with one more mountain:

aecho=0.8:0.9:1000/1800:0.3|0.25

36.7 aemphasisf[TOC|

Audio emphasis filter creates or restores material directly taken from LPs or emphased CDs with different
filter curves. E.g. to store music on vinyl the signal has to be altered by a filter first to even out the
disadvantages of this recording medium. Once the material is played back the inverse filter has to be
applied to restore the distortion of the frequency response.

The filter accepts the following options:
level_in

Set input gain.
level_out

Set output gain.

mode

Set filter mode. For restoring material use reproduct ion mode, otherwise use production
mode. Default is reproduction mode.

type
Set filter type. Selects medium. Can be one of the following:
col
select Columbia.
emi
select EMI.
bsi
select BSI (78RPM).
riaa
select RIAA.
cd
select Compact Disc (CD).
50fm
select 50Aus (FM).
75fm
select 75Aps (FM).
50kf
select SOA;JS (FM-KF).
75kf

select 75Aus (FM-KF).

36.8 aevalfiTOC

Modify an audio signal according to the specified expressions.

This filter accepts one or more expressions (one for each channel), which are evaluated and used to
modify a corresponding audio signal.

It accepts the following parameters:
exprs

Set the ’|’-separated expressions list for each separate channel. If the number of input channels is
greater than the number of expressions, the last specified expression is used for the remaining output
channels.

channel_layout, c

Set output channel layout. If not specified, the channel layout is specified by the number of
expressions. If set to ‘same’, it will use by default the same input channel layout.

Each expression in exprs can contain the following constants and functions:

ch
channel number of the current expression
n
number of the evaluated sample, starting from 0
s
sample rate
t

time of the evaluated sample expressed in seconds

nb_in_channels
nb_out_channels

input and output number of channels
val (CH)

the value of input channel with number CH

Note: this filter is slow. For faster processing you should use a dedicated filter.

36.8.1 Examples#]

® Half volume:
aeval=val (ch) /2:c=same
® [Invert phase of the second channel:

aeval=va1(0)|—val(l)

36.9 afadefiTOC

Apply fade-in/out effect to input audio.
A description of the accepted parameters follows.
type, t

Specify the effect type, can be either in for fade-in, or out for a fade-out effect. Default is in.
start_sample, ss

Specify the number of the start sample for starting to apply the fade effect. Default is O.
nb_samples, ns

Specify the number of samples for which the fade effect has to last. At the end of the fade-in effect
the output audio will have the same volume as the input audio, at the end of the fade-out transition
the output audio will be silence. Default is 44100.

start_time, st

Specify the start time of the fade effect. Default is 0. The value must be specified as a time duration;
see (ffmpeg-utils)the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax. If
set this option is used instead of start_sample.

duration, d

Specify the duration of the fade effect. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. At the end of the fade-in effect the output audio will
have the same volume as the input audio, at the end of the fade-out transition the output audio will be
silence. By default the duration is determined by nb_samples. If set this option is used instead of
nb_samples.

curve

Set curve for fade transition.
It accepts the following values:
tri

select triangular, linear slope (default)
gsin

select quarter of sine wave
hsin

select half of sine wave
esin

select exponential sine wave
log

select logarithmic
ipar

select inverted parabola
qua

select quadratic
cub

select cubic
squ

select square root
cbr

select cubic root
par

select parabola

exp

select exponential
igsin

select inverted quarter of sine wave
ihsin

select inverted half of sine wave
dese

select double-exponential seat
desi

select double-exponential sigmoid

36.9.1 Exampled#|

® Fade in first 15 seconds of audio:
afade=t=in:ss=0:d=15
® Fade out last 25 seconds of a 900 seconds audio:

afade=t=out:st=875:d=25

36.10 afftfilffiTOC

Apply arbitrary expressions to samples in frequency domain.
real

Set frequency domain real expression for each separate channel separated by °|". Default is "1". If the
number of input channels is greater than the number of expressions, the last specified expression is
used for the remaining output channels.

imag

Set frequency domain imaginary expression for each separate channel separated by ’|’. If not set, real
option is used.

Each expression in real and imag can contain the following constants:
sr

sample rate

current frequency bin number
nb
number of available bins
ch
channel number of the current expression
chs
number of channels
pts
current frame pts
win_size
Set window size.
It accepts the following values:
‘wlé’
‘w32’
‘wed’
‘wl28’
‘w256’
‘w512’
‘wl024°
‘w2048’
‘wd096’
‘w8192’
‘wl6384°

‘w32768’
‘w65536°

Defaultis w4096
win_func
Set window function. Default is hann.

overlap

Set window overlap. If set to 1, the recommended overlap for selected window function will be
picked. Defaultis 0. 75.

36.10.1 Examples#]

® [eave almost only low frequencies in audio:

afftfilt="1-clip((b/nb)*b,0,1)"

36.11 afiff[TOC]

Apply an arbitrary Frequency Impulse Response filter.
This filter is designed for applying long FIR filters, up to 30 seconds long.

It can be used as component for digital crossover filters, room equalization, cross talk cancellation,
wavefield synthesis, auralization, ambiophonics and ambisonics.

This filter uses second stream as FIR coefficients. If second stream holds single channel, it will be used for
all input channels in first stream, otherwise number of channels in second stream must be same as number
of channels in first stream.

It accepts the following parameters:
dry
Set dry gain. This sets input gain.
wet
Set wet gain. This sets final output gain.
length
Set Impulse Response filter length. Default is 1, which means whole IR is processed.
again

Enable applying gain measured from power of IR.

36.11.1 Examples#|TOC|

® Apply reverb to stream using mono IR file as second input, complete command using ffmpeg:

ffmpeg -i input.wav -i middle_tunnel_lway_mono.wav -lavfi afir output.wav

36.12 aformat#[TOC

Set output format constraints for the input audio. The framework will negotiate the most appropriate
format to minimize conversions.

It accepts the following parameters:
sample_fmts
A’|-separated list of requested sample formats.
sample_rates
A ’|’-separated list of requested sample rates.
channel_layouts
A ’|’-separated list of requested channel layouts.
See (ffmpeg-utils)the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.
If a parameter is omitted, all values are allowed.

Force the output to either unsigned 8-bit or signed 16-bit stereo

aformat=sample_fmts=u8 | sl6:channel_layouts=stereo

36.13 agatef|[TOC]

A gate is mainly used to reduce lower parts of a signal. This kind of signal processing reduces disturbing
noise between useful signals.

Gating is done by detecting the volume below a chosen level threshold and dividing it by the factor set
with ratio. The bottom of the noise floor is set via range. Because an exact manipulation of the signal
would cause distortion of the waveform the reduction can be levelled over time. This is done by setting
attack and release.

attack determines how long the signal has to fall below the threshold before any reduction will occur and
release sets the time the signal has to rise above the threshold to reduce the reduction again. Shorter
signals than the chosen attack time will be left untouched.

level_in
Set input level before filtering. Default is 1. Allowed range is from 0.015625 to 64.

range

Set the level of gain reduction when the signal is below the threshold. Default is 0.06125. Allowed
range is from O to 1.

threshold

If a signal rises above this level the gain reduction is released. Default is 0.125. Allowed range is
fromOto 1.

ratio
Set a ratio by which the signal is reduced. Default is 2. Allowed range is from 1 to 9000.
attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction stops. Default
is 20 milliseconds. Allowed range is from 0.01 to 9000.

release

Amount of milliseconds the signal has to fall below the threshold before the reduction is increased
again. Default is 250 milliseconds. Allowed range is from 0.01 to 9000.

makeup
Set amount of amplification of signal after processing. Default is 1. Allowed range is from 1 to 64.
knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is
2.828427125. Allowed range is from 1 to 8.

detection

Choose if exact signal should be taken for detection or an RMS like one. Default is rms. Can be
peak or rms.

link

Choose if the average level between all channels or the louder channel affects the reduction. Default
is average. Can be average or maximum.

36.14 alimiter§]

The limiter prevents an input signal from rising over a desired threshold. This limiter uses lookahead
technology to prevent your signal from distorting. It means that there is a small delay after the signal is
processed. Keep in mind that the delay it produces is the attack time you set.

The filter accepts the following options:
level_in
Set input gain. Default is 1.
level_out
Set output gain. Default is 1.
limit
Don’t let signals above this level pass the limiter. Default is 1.
attack

The limiter will reach its attenuation level in this amount of time in milliseconds. Default is 5
milliseconds.

release

Come back from limiting to attenuation 1.0 in this amount of milliseconds. Default is 50
milliseconds.

asc

When gain reduction is always needed ASC takes care of releasing to an average reduction level
rather than reaching a reduction of 0 in the release time.

asc_level

Select how much the release time is affected by ASC, 0 means nearly no changes in release time
while 1 produces higher release times.

level
Auto level output signal. Default is enabled. This normalizes audio back to 0dB if enabled.

Depending on picked setting it is recommended to upsample input 2x or 4x times with [aresample] before
applying this filter.

36.15 allpass#]

Apply a two-pole all-pass filter with central frequency (in Hz) frequency, and filter-width width. An
all-pass filter changes the audio’s frequency to phase relationship without changing its frequency to
amplitude relationship.

The filter accepts the following options:
frequency, £

Set frequency in Hz.
width_type, t

Set method to specify band-width of filter.

h
Hz
q
Q-Factor
o
octave
s
slope
width, w

Specify the band-width of a filter in width_type units.
channels, c

Specify which channels to filter, by default all available are filtered.

36.16 aloop#]

Loop audio samples.
The filter accepts the following options:
loop
Set the number of loops.
size

Set maximal number of samples.

start

Set first sample of loop.

36.17 amergefiTOC

Merge two or more audio streams into a single multi-channel stream.
The filter accepts the following options:
inputs

Set the number of inputs. Default is 2.

If the channel layouts of the inputs are disjoint, and therefore compatible, the channel layout of the output
will be set accordingly and the channels will be reordered as necessary. If the channel layouts of the inputs
are not disjoint, the output will have all the channels of the first input then all the channels of the second
input, in that order, and the channel layout of the output will be the default value corresponding to the total
number of channels.

For example, if the first input is in 2.1 (FL+FR+LF) and the second input is FC+BL+BR, then the output
will be in 5.1, with the channels in the following order: al, a2, b1, a3, b2, b3 (al is the first channel of the
first input, bl is the first channel of the second input).

On the other hand, if both input are in stereo, the output channels will be in the default order: al, a2, b1,
b2, and the channel layout will be arbitrarily set to 4.0, which may or may not be the expected value.

All inputs must have the same sample rate, and format.

If inputs do not have the same duration, the output will stop with the shortest.

36.17.1 Examples#|TOC

® Merge two mono files into a stereo stream:
amovie=left.wav [l] ; amovie=right.mp3 [r] ; [1l] [r] amerge

® Multiple merges assuming 1 video stream and 6 audio streams in input .mkv:

ffmpeg -i input.mkv -filter_complex "[0:1][0:2][0:3][0:4][0:5][0:6] amerge=inputs=6" -c:a pcm_sl6le output.mkv

36.18 amix#

Mixes multiple audio inputs into a single output.

Note that this filter only supports float samples (the amerge and pan audio filters support many formats).
If the amix input has integer samples then faresample] will be automatically inserted to perform the
conversion to float samples.

For example

ffmpeg —-i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT

will mix 3 input audio streams to a single output with the same duration as the first input and a dropout
transition time of 3 seconds.

It accepts the following parameters:
inputs
The number of inputs. If unspecified, it defaults to 2.
duration
How to determine the end-of-stream.
longest
The duration of the longest input. (default)
shortest
The duration of the shortest input.
first
The duration of the first input.
dropout_transition

The transition time, in seconds, for volume renormalization when an input stream ends. The default
value is 2 seconds.

36.19 anequalizerf]

High-order parametric multiband equalizer for each channel.

It accepts the following parameters:

params
This option string is in format: "cchn f=cf w=w g=g t=f| ..." Each equalizer band is separated by ’|’.
chn

Set channel number to which equalization will be applied. If input doesn’t have that channel the
entry is ignored.

Set central frequency for band. If input doesn’t have that frequency the entry is ignored.

"
Set band width in hertz.
9
Set band gain in dB.
t
Set filter type for band, optional, can be:
0’
Butterworth, this is default.
‘1
Chebyshev type 1.
o
Chebyshev type 2.
curves

With this option activated frequency response of anequalizer is displayed in video stream.
size

Set video stream size. Only useful if curves option is activated.
mgain

Set max gain that will be displayed. Only useful if curves option is activated. Setting this to a
reasonable value makes it possible to display gain which is derived from neighbour bands which are
too close to each other and thus produce higher gain when both are activated.

fscale

Set frequency scale used to draw frequency response in video output. Can be linear or logarithmic.
Default is logarithmic.

colors

Set color for each channel curve which is going to be displayed in video stream. This is list of color
names separated by space or by ’|”. Unrecognised or missing colors will be replaced by white color.

36.19.1 Examples]

® [ower gain by 10 of central frequency 200Hz and width 100 Hz for first 2 channels using Chebyshev
type 1 filter:

anequalizer=c0 f=200 w=100 g=-10 t=l|cl £f=200 w=100 g=-10 t=1

36.19.2 Commands#|TOC

This filter supports the following commands:
change
Alter existing filter parameters. Syntax for the commands is : "fN|f=freq|w=width|g=gain"

SN is existing filter number, starting from 0, if no such filter is available error is returned. freq set new
frequency parameter. width set new width parameter in herz. gain set new gain parameter in dB.

Full filter invocation with asendcmd may look like this: asendcmd=c="4.0 anequalizer change
0[f=200|w=50|g=1",anequalizer=...

36.20 anulfTOQ

Pass the audio source unchanged to the output.

36.21 apad#]

Pad the end of an audio stream with silence.

This can be used together with £ fmpeg —shortest to extend audio streams to the same length as the
video stream.

A description of the accepted options follows.
packet_size

Set silence packet size. Default value is 4096.
pad_len

Set the number of samples of silence to add to the end. After the value is reached, the stream is
terminated. This option is mutually exclusive with whole_len.

whole_len

Set the minimum total number of samples in the output audio stream. If the value is longer than the
input audio length, silence is added to the end, until the value is reached. This option is mutually exclusive
with pad_1len.

If neither the pad_len nor the whole_len option is set, the filter will add silence to the end of the
input stream indefinitely.

36.21.1 Examplesf|TOC|

® Add 1024 samples of silence to the end of the input:
apad=pad_len=1024

® Make sure the audio output will contain at least 10000 samples, pad the input with silence if required:
apad=whole_len=10000

® Use ffmpeg to pad the audio input with silence, so that the video stream will always result the
shortest and will be converted until the end in the output file when using the shortest option:

ffmpeg —-i VIDEO -i AUDIO -filter_complex "[l:0]apad" -shortest OUTPUT

36.22 aphaser#iTO(C]

Add a phasing effect to the input audio.

A phaser filter creates series of peaks and troughs in the frequency spectrum. The position of the peaks
and troughs are modulated so that they vary over time, creating a sweeping effect.

A description of the accepted parameters follows.
in_gain

Set input gain. Default is 0.4.
out_gain

Set output gain. Default is 0.74
delay

Set delay in milliseconds. Default is 3.0.
decay

Set decay. Default is 0.4.

speed

Set modulation speed in Hz. Default is 0.5.
type

Set modulation type. Default is triangular.

It accepts the following values:

‘triangular, t’
‘sinusoidal, s’

36.23 apulsatorf]

Audio pulsator is something between an autopanner and a tremolo. But it can produce funny stereo effects
as well. Pulsator changes the volume of the left and right channel based on a LFO (low frequency
oscillator) with different waveforms and shifted phases. This filter have the ability to define an offset
between left and right channel. An offset of 0 means that both LFO shapes match each other. The left and
right channel are altered equally - a conventional tremolo. An offset of 50% means that the shape of the
right channel is exactly shifted in phase (or moved backwards about half of the frequency) - pulsator acts
as an autopanner. At 1 both curves match again. Every setting in between moves the phase shift gapless
between all stages and produces some "bypassing" sounds with sine and triangle waveforms. The more
you set the offset near 1 (starting from the 0.5) the faster the signal passes from the left to the right
speaker.

The filter accepts the following options:
level_in

Set input gain. By default it is 1. Range is [0.015625 - 64].
level_out

Set output gain. By default it is 1. Range is [0.015625 - 64].
mode

Set waveform shape the LFO will use. Can be one of: sine, triangle, square, sawup or sawdown.
Default is sine.

amount
Set modulation. Define how much of original signal is affected by the LFO.
offset_1

Set left channel offset. Default is 0. Allowed range is [0 - 1].

offset_r
Set right channel offset. Default is 0.5. Allowed range is [0 - 1].
width
Set pulse width. Default is 1. Allowed range is [0 - 2].
timing
Set possible timing mode. Can be one of: bpm, ms or hz. Default is hz.
bpm
Set bpm. Default is 120. Allowed range is [30 - 300]. Only used if timing is set to bpm.
ms

Set ms. Default is 500. Allowed range is [10 - 2000]. Only used if timing is set to ms.

Set frequency in Hz. Default is 2. Allowed range is [0.01 - 100]. Only used if timing is set to hz.

36.24 aresample]

Resample the input audio to the specified parameters, using the libswresample library. If none are
specified then the filter will automatically convert between its input and output.

This filter is also able to stretch/squeeze the audio data to make it match the timestamps or to inject silence
/ cut out audio to make it match the timestamps, do a combination of both or do neither.

The filter accepts the syntax [sample_rate:]resampler_options, where sample_rate expresses a sample rate
and resampler_options is a list of key=value pairs, separated by ":". See the (ffmpeg-resampler)the
"Resampler Options" section in the ffmpeg-resampler(1) manual for the complete list of supported
options.

36.24.1 Examples#]
® Resample the input audio to 44100Hz:

aresample=44100

® Stretch/squeeze samples to the given timestamps, with a maximum of 1000 samples per second
compensation:

aresample=async=1000

36.25 areversef[TOC]

Reverse an audio clip.

Warning: This filter requires memory to buffer the entire clip, so trimming is suggested.

36.25.1 Examples#]

® Take the first 5 seconds of a clip, and reverse it.

atrim=end=5, areverse

36.26 asetnsamples#]

Set the number of samples per each output audio frame.

The last output packet may contain a different number of samples, as the filter will flush all the remaining
samples when the input audio signals its end.

The filter accepts the following options:
nb_out_samples, n

Set the number of frames per each output audio frame. The number is intended as the number of
samples per each channel. Default value is 1024.

pad, p

If set to 1, the filter will pad the last audio frame with zeroes, so that the last frame will contain the
same number of samples as the previous ones. Default value is 1.

For example, to set the number of per-frame samples to 1234 and disable padding for the last frame, use:

asetnsamples=n=1234:p=0

36.27 asetratefiTOC]

Set the sample rate without altering the PCM data. This will result in a change of speed and pitch.
The filter accepts the following options:
sample_rate, r

Set the output sample rate. Default is 44100 Hz.

36.28 ashowinfd#[TOC]

Show a line containing various information for each input audio frame. The input audio is not modified.
The shown line contains a sequence of key/value pairs of the form key:value.
The following values are shown in the output:
n
The (sequential) number of the input frame, starting from O.
pts

The presentation timestamp of the input frame, in time base units; the time base depends on the filter
input pad, and is usually 1/sample_rate.

pts_time
The presentation timestamp of the input frame in seconds.
pos

position of the frame in the input stream, -1 if this information in unavailable and/or meaningless (for
example in case of synthetic audio)

fmt

The sample format.
chlayout

The channel layout.
rate

The sample rate for the audio frame.
nb_samples

The number of samples (per channel) in the frame.
checksum

The Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio, the data is
treated as if all the planes were concatenated.

plane_checksums

A list of Adler-32 checksums for each data plane.

36.29 astatdfi[TOC

Display time domain statistical information about the audio channels. Statistics are calculated and
displayed for each audio channel and, where applicable, an overall figure is also given.

It accepts the following option:
length

Short window length in seconds, used for peak and trough RMS measurement. Defaultis 0. 05 (50
milliseconds). Allowed rangeis [0.1 - 10].

metadata

Set metadata injection. All the metadata keys are prefixed with 1avfi.astats.X, where X is
channel number starting from 1 or string Overall. Default is disabled.

Available keys for each channel are: DC_offset Min_level Max_level Min_difference
Max_difference Mean_difference RMS_difference Peak_level RMS_peak RMS_trough Crest_factor
Flat_factor Peak_count Bit_depth Dynamic_range

and for Overall: DC_offset Min_level Max_level Min_difference Max_difference Mean_difference
RMS_difference Peak_level RMS_level RMS_peak RMS_trough Flat_factor Peak_count Bit_depth
Number_of_samples

For example full key look like this 1lavfi.astats.1.DC_offset or this
lavfi.astats.Overall.Peak_count.

For description what each key means read below.
reset
Set number of frame after which stats are going to be recalculated. Default is disabled.
A description of each shown parameter follows:
DC offset
Mean amplitude displacement from zero.
Min level
Minimal sample level.

Max level

Maximal sample level.
Min difference

Minimal difference between two consecutive samples.
Max difference

Maximal difference between two consecutive samples.
Mean difference

Mean difference between two consecutive samples. The average of each difference between two
consecutive samples.

RMS difference
Root Mean Square difference between two consecutive samples.

Peak level dB
RMS level dB

Standard peak and RMS level measured in dBFS.

RMS peak dB
RMS trough dB

Peak and trough values for RMS level measured over a short window.
Crest factor

Standard ratio of peak to RMS level (note: not in dB).
Flat factor

Flatness (i.e. consecutive samples with the same value) of the signal at its peak levels (i.e. either Min
level or Max level).

Peak count

Number of occasions (not the number of samples) that the signal attained either Min level or Max
level.

Bit depth
Overall bit depth of audio. Number of bits used for each sample.

Dynamic range

Measured dynamic range of audio in dB.

36.30 atempo#[TOC

Adjust audio tempo.

The filter accepts exactly one parameter, the audio tempo. If not specified then the filter will assume
nominal 1.0 tempo. Tempo must be in the [0.5, 2.0] range.

36.30.1 Examples#]

® Slow down audio to 80% tempo:
atempo=0.8
® To speed up audio to 125% tempo:

atempo=1.25

36.31 atrimff[TOC]

Trim the input so that the output contains one continuous subpart of the input.
It accepts the following parameters:
start

Timestamp (in seconds) of the start of the section to keep. I.e. the audio sample with the timestamp
start will be the first sample in the output.

end

Specify time of the first audio sample that will be dropped, i.e. the audio sample immediately
preceding the one with the timestamp end will be the last sample in the output.

start_pts

Same as start, except this option sets the start timestamp in samples instead of seconds.
end_pts

Same as end, except this option sets the end timestamp in samples instead of seconds.
duration

The maximum duration of the output in seconds.

start_sample

The number of the first sample that should be output.
end_sample
The number of the first sample that should be dropped.

start, end, and duration are expressed as time duration specifications; see (ffmpeg-utils)the Time
duration section in the ffmpeg-utils(1) manual.

Note that the first two sets of the start/end options and the durat ion option look at the frame timestamp,
while the _sample options simply count the samples that pass through the filter. So start/end_pts and
start/end_sample will give different results when the timestamps are wrong, inexact or do not start at zero.
Also note that this filter does not modify the timestamps. If you wish to have the output timestamps start at
zero, insert the asetpts filter after the atrim filter.

If multiple start or end options are set, this filter tries to be greedy and keep all samples that match at least
one of the specified constraints. To keep only the part that matches all the constraints at once, chain
multiple atrim filters.

The defaults are such that all the input is kept. So it is possible to set e.g. just the end values to keep
everything before the specified time.

Examples:

® Drop everything except the second minute of input:
ffmpeg —-i INPUT -af atrim=60:120
® Keep only the first 1000 samples:

ffmpeg —-i INPUT -af atrim=end_sample=1000

36.32 bandpass§fiTOC

Apply a two-pole Butterworth band-pass filter with central frequency frequency, and (3dB-point)
band-width width. The csg option selects a constant skirt gain (peak gain = Q) instead of the default:
constant 0dB peak gain. The filter roll off at 6dB per octave (20dB per decade).

The filter accepts the following options:
frequency, £

Set the filter’s central frequency. Default is 3000.
csg

Constant skirt gain if set to 1. Defaults to 0.

width_type, t

Set method to specify band-width of filter.

h
Hz
q
Q-Factor
o
octave
S
slope
width, w

Specify the band-width of a filter in width_type units.
channels, c

Specify which channels to filter, by default all available are filtered.

36.33 bandreject#i TOC

Apply a two-pole Butterworth band-reject filter with central frequency frequency, and (3dB-point)
band-width width. The filter roll off at 6dB per octave (20dB per decade).

The filter accepts the following options:
frequency, £

Set the filter’s central frequency. Default is 3000.
width_type, t

Set method to specify band-width of filter.

h

Q-Factor

o
octave
]
slope
width, w

Specify the band-width of a filter in width_type units.
channels, c

Specify which channels to filter, by default all available are filtered.

36.34 bass#{[TOC

Boost or cut the bass (lower) frequencies of the audio using a two-pole shelving filter with a response
similar to that of a standard hi-fi’s tone-controls. This is also known as shelving equalisation (EQ).

The filter accepts the following options:
gain, g

Give the gain at 0 Hz. Its useful range is about -20 (for a large cut) to +20 (for a large boost). Beware
of clipping when using a positive gain.

frequency, £

Set the filter’s central frequency and so can be used to extend or reduce the frequency range to be
boosted or cut. The default value is 100 Hz.

width_type, t
Set method to specify band-width of filter.

h

Q-Factor

octave

slope
width, w
Determine how steep is the filter’s shelf transition.
channels, c

Specify which channels to filter, by default all available are filtered.

36.35 biquad#[TO(C]

Apply a biquad IIR filter with the given coefficients. Where b0, b1, b2 and a0, al, a2 are the numerator
and denominator coefficients respectively. and channels, c specify which channels to filter, by default all
available are filtered.

36.36 bs2bf[TOQ

Bauer stereo to binaural transformation, which improves headphone listening of stereo audio records.
To enable compilation of this filter you need to configure FFmpeg with ——enable-1ibbs2b.
It accepts the following parameters:
profile
Pre-defined crossfeed level.
default
Default level (fcut=700, feed=50).
cmoy
Chu Moy circuit (fcut=700, feed=60).
Jjmeier
Jan Meier circuit (fcut=650, feed=95).
fcut

Cut frequency (in Hz).

feed

Feed level (in Hz).

36.37 channelmap#[TO(C

Remap input channels to new locations.
It accepts the following parameters:

map

Map channels from input to output. The argument is a ’|’-separated list of mappings, each in the
in_channel-out_channel or in_channel form. in_channel can be either the name of the input
channel (e.g. FL for front left) or its index in the input channel layout. out_channel is the name of the
output channel or its index in the output channel layout. If out_channel is not given then it is
implicitly an index, starting with zero and increasing by one for each mapping.

channel_layout
The channel layout of the output stream.

If no mapping is present, the filter will implicitly map input channels to output channels, preserving
indices.

For example, assuming a 5.14+downmix input MOV file,
ffmpeg -1 in.mov —-filter ’channelmap:map=DL—FL|DR—FR’ out.wav
will create an output WAV file tagged as stereo from the downmix channels of the input.

To fix a 5.1 WAYV improperly encoded in AAC’s native channel order

ffmpeg -i in.wav —-filter ’channelmap=1|2|0|5|3|4:5.1’ out.wav

36.38 channelsplit#

Split each channel from an input audio stream into a separate output stream.
It accepts the following parameters:
channel_layout

The channel